
ARC with caching
NeIC NT1 Manager

Mattias Wadenstein 
<maswan@ndgf.org>

2019-10-11
ARC workshop, Amsterdam



SPEAKER | Mattias Wadenstein <maswan@ndgf.org> 2

Overview
 

What
Why
Design
In practice



SPEAKER | Mattias Wadenstein <maswan@ndgf.org> 3

What

● ARC can do data 
staging
– Prepares all input files 

needed by the job 
before submission to 
batch system

– Saves all requested 
outputs to remote 
storage afterwards

– Cache for reuse of 
input files between 
jobs



SPEAKER | Mattias Wadenstein <maswan@ndgf.org> 4

What

●ARC in data caching mode
– Each job description has a list of input and output files (rucio://...)
– The CE stages all these files to local cache and links them in the 

session directory
– The job is submitted to batch system and runs on local files only
– Afterwards the listed output files are uploaded to SEs

●Caches are normal shared filesystems
– NFS, CephFS, GPFS, Lustre, etc



SPEAKER | Mattias Wadenstein <maswan@ndgf.org> 5

Why

●Overall efficiency
– Data access is on low-latency local filesystems
– Download before submission to batch system → better CPU efficiency

●Non-local storage
– Like NDGF with distributed storage
– Or a “compute only” site

●Limited external connectivity
– Like HPC sites where external connectivity might be blocked or only 

available through a slow NAT

●No need for grid-aware computational software



SPEAKER | Mattias Wadenstein <maswan@ndgf.org> 6

Design

●Caches and session directories are placed on 
shared filesystems between CE and WNs

●DataDeliveryService nodes transfer data in and 
out from the session directory and caches
– Can be one or several, depending on the data rates you want to 

support
– One common deployment is to have 5-15 NFS servers all running a 

DDS for the local filesystem

●Caches are automatically cleaned LRU



SPEAKER | Mattias Wadenstein <maswan@ndgf.org> 7

Design

●Lots of protocol support
– HTTPS, GridFTP, SRM, S3, rucio, XrootD, ACIX, etc

●DataDeliveryService processes only do simple transfers
– Scheduling logic etc in the central A-REX component

●Remote access to cache contents possible
– Sharing cache between close CEs instead of download from far SE
– Two different methods of publishing contents
– Can also be used for cache-aware scheduling

●Dynamic on demand downloads
– Possible through “candypond” API usage from running job



SPEAKER | Mattias Wadenstein <maswan@ndgf.org> 8

Design

Reliable

CheapFast

dCache pools

Cache



SPEAKER | Mattias Wadenstein <maswan@ndgf.org> 9

In practice

●This is experience from NDGF ATLAS usage
– Other communities might have different IO patterns

●About 100TiB is sufficient cache space to support a 
few thousand cores of ATLAS compute
– Bigger will have better cache reuse
– Sample point, a 204TiB cache for ~4k ATLAS cores: 

50% of files accessed within 24h
90% of files accessed within 48h



SPEAKER | Mattias Wadenstein <maswan@ndgf.org> 10

In Practice (4k cores ATLAS)

2 Gbyte/s



SPEAKER | Mattias Wadenstein <maswan@ndgf.org> 11

ARC in a distributed site context

●Staging makes ARC 
location agnostic

●No problem getting 
some data from 
other sites

●CE-CE transfer 
from one cache to 
another

DISKCE

CE

CE

CE

DISK

DISK

DISK



Questions?

12


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

