
Exploring public databases

How to query a database
you’ve never seen before



URI Namespaces

http://identifiers.org/ncbigene/672



URI Namespaces

http://identifiers.org/ncbigene/672

Namespace

ID



URI Namespaces

http://identifiers.org/ncbigene/

                                                672



URI Namespaces

PREFIX   ns:   <http://identifiers.org/ncbigene/>

                                                672



URI Namespaces

PREFIX   ncbi:   <http://identifiers.org/ncbigene/>

                                                672

The prefix can be any series of characters; 
you can choose whatever you wish



URI Namespaces

PREFIX   ncbi:   <http://identifiers.org/ncbigene/>

                                           ncbi:672



URI Namespaces

PREFIX   ncbi:   <http://identifiers.org/ncbigene/>

                                           ncbi:672

And for the rest of the document (RDF or SPARQL)
you refer to BRCA1 as ncbi:672

easy!



Common Namespaces in SPARQL

PREFIX   rdf:   <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

                         For example  rdf:type

PREFIX   rdfs:   <http://www.w3.org/2000/01/rdf-schema#>

                        For example  rdfs:label

PREFIX   dc:   <http://purl.org/dc/terms/>

                        For example   dc:author,   dc:title



Common Namespaces in Biomedicine

PREFIX   obo:   <http://purl.obolibrary.org/obo/>

          For example:     obo:NCBITaxon_9606    (“Human”)

PREFIX   sio:   <http://semanticscience.org/resource/>

          For example:     sio:SIO_000300    (“has value”)

PREFIX   up:   <http://purl.uniprot.org/core/> 

          For example:     up:Sequence        (an amino acid sequence)



How to look-up a namespace

http://prefix.cc

For example:   http://prefix.cc/edam



Often this is done for you….



Let’s start SPARQLing!

Go to:  https://www.ebi.ac.uk/rdf/services/atlas/sparql

    Or      http://wwwdev.ebi.ac.uk/rdf/services/sparql



They give you an example 
query to help you get 
started



We want to explore the array expression data for BRCA1

We know the URI is:
  <http://rdf.ebi.ac.uk/resource/ensembl/ENSG00000012048>

We know that Array Express has expression data

How do we begin, when we don’t know anything about the 
content/structure of that database?



Exploratory SPARQL 

Patterns you can use to explore any 
SPARQL endpoint



Named Graphs

Named Graphs are a way to group-together  sets of triples

BRCA1
Interacts with

PALB2



Named Graphs

Named Graphs are a way to group-together  sets of triples

BRCA1
Interacts with

PALB2



Named Graphs

Named Graphs are a way to group-together  sets of triples

BRCA1
Interacts with

PALB2

http://myorg.org/graph/1

The “name” of a graph is another URI



The EBI RDF Platform Named Graphs



The EBI RDF Platform Named Graphs

For the remainder of this lecture, all of our queries will have the clause:

FROM <http://rdf.ebi.ac.uk/dataset/expressionatlas>

This will allow us to limit our queries to ONLY data in expression atlas



DESCRIBE

So far you have focused on “SELECT” queries.  

Another kind of query is a “DESCRIBE” query.  

It (usually) tells you the triples that have a certain URI as 
the subject.  It sometimes tells you other useful things.  
Sometimes it tells you nothing useful at all!  But it is a 
good place to start!

DESCRIBE queries are as simple as:

DESCRIBE <http://rdf.ebi.ac.uk/resource/ensembl/ENSG00000012048>



DESCRIBE

So far you have focused on “SELECT” queries.  

Another kind of query is a “DESCRIBE” query.  

It (usually) tells you the triples that have a certain URI as 
the subject.  It sometimes tells you other useful things.  
Sometimes it tells you nothing useful at all!  But it is a 
good place to start!

DESCRIBE queries are as simple as:

PREFIX gene: <http://rdf.ebi.ac.uk/resource/ensembl/>
DESCRIBE  gene:ENSG00000012048
FROM <http://rdf.ebi.ac.uk/dataset/expressionatlas>





This result tells us that our BRCA1 gene is:  
a)  In the database (good!), but 
b) NOT the subject of any “useful” triples 

i.e. the query doesn’t tell us anything we don’t already know.
So, we will check if it is the object of some useful triples



In the next few slides 
We will “step backwards” through the data. 

We assume that our BRCA1 gene
 Is the  O  of a [S, P, O] triple  

We want to know the S’s and the P’s



PREFIX gene: <http://rdf.ebi.ac.uk/resource/ensembl/>

SELECT * 
FROM <http://rdf.ebi.ac.uk/dataset/expressionatlas>
WHERE {  
   ?s   ?p   gene:ENSG00000012048
}



PREFIX gene: <http://rdf.ebi.ac.uk/resource/ensembl/>

SELECT * 
FROM <http://rdf.ebi.ac.uk/dataset/expressionatlas>
WHERE {  
   ?s   ?p   gene:ENSG00000012048
}

The gene is connected to “things” in the database using the predicate “refersTo”

Is this the only way it is used in the Array Atlas dataset?



PREFIX gene: <http://rdf.ebi.ac.uk/resource/ensembl/>

SELECT distinct ?p 
FROM <http://rdf.ebi.ac.uk/dataset/expressionatlas>
WHERE {  
   ?s   ?p   gene:ENSG00000012048
}

Ensembl genes are always “referredTo”

i.e., There are no other predicates with 
gene:ENSG00000012048  as the object 

of the triple.



PREFIX  atlasterms: <http://rdf.ebi.ac.uk/terms/expressionatlas/>
PREFIX  gene: <http://rdf.ebi.ac.uk/resource/ensembl/>
    
SELECT *
FROM <http://rdf.ebi.ac.uk/dataset/expressionatlas>
WHERE {  
   ?s  atlasterms:refersTo   gene:ENSG00000012048
}

What are these subjects?

You can click on them (to go to a web page about them), 
or… use SPARQL



The Subjects are of type Increased/Decreased  Diff Expression 
Ratio, and baseline expression value

What can we learn about these kinds of things?

PREFIX atlasterms: <http://rdf.ebi.ac.uk/terms/expressionatlas/>
PREFIX gene: <http://rdf.ebi.ac.uk/resource/ensembl/>
    
SELECT DISTINCT ?type
FROM <http://rdf.ebi.ac.uk/dataset/expressionatlas>
WHERE {  

?s  atlasterms:refersTo   gene:ENSG00000012048 .
?s    a   ?type

}



The label might be useful (to make things readable).  “isOutputOf” also looks useful (i.e. an 
experimental observation is the output of an experiment, so… that probably points to the assay 
or or something like that…?)

PREFIX atlasterms: <http://rdf.ebi.ac.uk/terms/expressionatlas/>
PREFIX gene: <http://rdf.ebi.ac.uk/resource/ensembl/>
    
SELECT DISTINCT ?predicates
FROM <http://rdf.ebi.ac.uk/dataset/expressionatlas>
WHERE {  

?s    atlasterms:refersTo   gene:ENSG00000012048 .
?s    ?predicates     ?o

}



PREFIX atlasterms: <http://rdf.ebi.ac.uk/terms/expressionatlas/>
PREFIX gene: <http://rdf.ebi.ac.uk/resource/ensembl/>
    
SELECT distinct ?type
FROM <http://rdf.ebi.ac.uk/dataset/expressionatlas>
WHERE {  
?s  atlasterms:refersTo   gene:ENSG00000012048 .
?s  atlasterms:isOutputOf    ?a .
?a    a     ?type
}

     ?a
?isOutputOf (some kind of 

ratio)

?s
     refersTo

12048 

type

?type This was our first 
step backwards



     ?a
?isOutputOf (some kind of 

ratio)

?s
     refersTo

12048 

type

?type This was our first 
step backwards

Now we want to 
take another step 
backwards

PREFIX atlasterms: <http://rdf.ebi.ac.uk/terms/expressionatlas/>
PREFIX gene: <http://rdf.ebi.ac.uk/resource/ensembl/>
    
SELECT distinct ?type
FROM <http://rdf.ebi.ac.uk/dataset/expressionatlas>
WHERE {  
?s  atlasterms:refersTo   gene:ENSG00000012048 .
?s  atlasterms:isOutputOf    ?a .
?a    a     ?type
}



     ?a
?isOutputOf (some kind of 

ratio)

?s
     refersTo

12048 

type

?type
And ask what type 
of “thing” ?subject 
is...

PREFIX atlasterms: <http://rdf.ebi.ac.uk/terms/expressionatlas/>
PREFIX gene: <http://rdf.ebi.ac.uk/resource/ensembl/>
    
SELECT distinct ?type
FROM <http://rdf.ebi.ac.uk/dataset/expressionatlas>
WHERE {  
?s  atlasterms:refersTo   gene:ENSG00000012048 .
?s  atlasterms:isOutputOf    ?a .
?a    a     ?type
}



As we guessed, these “things” are all Analyses :-)

PREFIX atlasterms: <http://rdf.ebi.ac.uk/terms/expressionatlas/>
PREFIX gene: <http://rdf.ebi.ac.uk/resource/ensembl/>
    
SELECT distinct ?type
FROM <http://rdf.ebi.ac.uk/dataset/expressionatlas>
WHERE {  
?s  atlasterms:refersTo   gene:ENSG00000012048 .
?s  atlasterms:isOutputOf    ?a .
?a    a     ?type
}



PREFIX atlasterms: <http://rdf.ebi.ac.uk/terms/expressionatlas/>
PREFIX gene: <http://rdf.ebi.ac.uk/resource/ensembl/>
    
SELECT distinct ?type
FROM <http://rdf.ebi.ac.uk/dataset/expressionatlas>
WHERE {  
?s  atlasterms:refersTo   gene:ENSG00000012048 .
?s  atlasterms:isOutputOf    ?a .
?a    a     ?type
}

     ?a
  isOutputOf

        ?s
     refersTo

BRCA1

type

Analysis
Expression

Ratio



PREFIX atlasterms: <http://rdf.ebi.ac.uk/terms/expressionatlas/>
PREFIX gene: <http://rdf.ebi.ac.uk/resource/ensembl/>
    
SELECT ?a   ?etype  ?s    ?stype
FROM <http://rdf.ebi.ac.uk/dataset/expressionatlas>
WHERE {  
?s  atlasterms:refersTo   gene:ENSG00000012048 .
?s  a   ?stype .
?s  atlasterms:isOutputOf    ?a .
?a  a   ?etype
}

     ?a
  isOutputOf

        ?s
     refersTo

BRCA1

type

Analysis
Expression

Ratio



PREFIX atlasterms: <http://rdf.ebi.ac.uk/terms/expressionatlas/>
PREFIX gene: <http://rdf.ebi.ac.uk/resource/ensembl/>
    
SELECT ?a   ?etype  ?s    ?stype
FROM <http://rdf.ebi.ac.uk/dataset/expressionatlas>
WHERE {  
?s  atlasterms:refersTo   gene:ENSG00000012048 .
?s  a   ?stype .
?s  atlasterms:isOutputOf    ?a .
?a  a   ?etype
}



PREFIX atlasterms: <http://rdf.ebi.ac.uk/terms/expressionatlas/>
PREFIX gene: <http://rdf.ebi.ac.uk/resource/ensembl/>
    
SELECT ?a   ?etype  ?s    ?stype
FROM <http://rdf.ebi.ac.uk/dataset/expressionatlas>
WHERE {  
?s  atlasterms:refersTo   gene:ENSG00000012048 .
?s  a   ?stype .
?s  atlasterms:isOutputOf    ?a .
?a  a   ?etype
}

Click on one of these and 
you will be able to see the 
entire record for that 
“subject”



We won’t go beyond this

The pattern is always the same

Importantly, machines can follow the same 
pattern!

So machines can easily explore a SPARQL 
endpoint automatically



PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX atlasterms: <http://rdf.ebi.ac.uk/terms/expressionatlas/>
PREFIX gene: <http://rdf.ebi.ac.uk/resource/ensembl/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>    

SELECT   DISTINCT ?slab ?description ?fpt ?fpv ?cpt ?cpv ?pvalue  ?tstat
FROM <http://rdf.ebi.ac.uk/dataset/expressionatlas>

WHERE {  
?s     atlasterms:refersTo    gene:ENSG00000012048 .
?s     rdfs:label             ?slab .
?s     atlasterms:isOutputOf ?anal .
?s     atlasterms:pValue    ?pvalue .
?s     atlasterms:tStatistic ?tstat .
?anal  rdfs:label              ?description .

?anal    atlasterms:hasReferenceAssay   ?refass .
?anal    atlasterms:hasTestAssay        ?testass .

?refass  atlasterms:hasInputSampleCharacteristic ?c .
?c       a     <http://purl.obolibrary.org/obo/UBERON_0002048> .
 
?testass atlasterms:hasFactorValue  ?fv .
?fv      atlasterms:propertyType    ?fpt .
?fv      atlasterms:propertyValue   ?fpv .

?refass  atlasterms:hasInputSampleCharacteristic ?char .
?char    atlasterms:propertyType      ?cpt .
?char    atlasterms:propertyValue     ?cpv .
  
FILTER(?tstat < -3)
}

If you take my full course, you learn how to create this complex query in about 2 hours



Query Federation

Leveraging GUIDs on a global scale



Points of intersection

http://pet.registry.com/MDW_112/pets/MD
W_112_Cat

Stormy

British Long

http://some.predicates.org/relations/has_breed

http://xmlns.com/foaf/0.1/name

My Graph

http://pet.registry.com/MDW_112/pets/MD
W_112_Cat

http://some.predicates.org/relations/has_parent

http://pet.registry.com/LA_0/pets/LA099

Snuggles

http://xmlns.com/foaf/0.1/name

Pet Shop’s
Graph



http://pet.registry.com/MDW_112/pets/MD
W_112_Cat

Stormy

British Lolng

http://some.predicates.org/relations/has_breed

http://xmlns.com/foaf/0.1/name

Benefits of RDF

predicates:has_parent
http://pet.registry.com/LA_0/pets/LA099

Snuggles

http://xmlns.com/foaf/0.1/name

A machine can do this data integration automatically

Unified Graph



Dynamic Merging of Datasets

SPARQL allows “Federated Query”

We can query more than one dataset at a time, and 
“join” them over the Web based on their shared 
URLs

(if the source provider also has a SPARQL endpoint)

During the planning phase, I added some of these 
shared URLs



my:Observationmy:Infection
has 
participant

Has participant

my:Parasite
Species

http://data.food.gov.uk/
codes/foodtype/hierarc
hy/facet/source/_
A059G

http://www.eu-nomen.eu/p
ortal/taxon.php?GUID=ur
n:lsid:faunaeur.org:taxn
ame:194388

has identifier

https://en.wikipedia
.org/wiki/ISO_3166
-2:ES

my:GeoLocation

is location of

is located in

My:timeof
observation

Measured at

sio:pathogen

sio:host

sio:identifier

EFO
Parasitic
infection

sio:time-interval

sio:measuring

sio:country

geo:Point

lat

long

#value

#value

has 
value

#val

has
unit

UO_00
00036

Maiz

Spain

Hippodamia 
variegata

rdfs:label

rdfs:label

2 fields: isogenic 
and transgenic 
maize. Data 
pooled during 
data entry.

rdfs:label



https://data.food.gov.uk/codes/ui/sparql-form#



http://training.fairdata.solutions/sparql/

What food codes do we have in our database?

We modelled these as “hosts”, so we will search for things that are SIO:host

select distinct ?host where {
 ?host a <http://semanticscience.org/resource/host> .
}



What can we learn about these “hosts” in food.gov?

What is my next step?



What can we learn about these “hosts” in food.gov?

Explore food.gov SPARQL endpoint using the techniques we just learned.



PREFIX food: <http://data.food.gov.uk/codes/foodtype/hierarchy/facet/source/>
SELECT DISTINCT ?p
WHERE {
    food:_A059D ?p ?o
}



PREFIX food: <http://data.food.gov.uk/codes/foodtype/hierarchy/facet/source/>
SELECT DISTINCT ?p
WHERE {
    food:_A059D ?p ?o
}



PREFIX food: 
<http://data.food.gov.uk/codes/foodtype/hierarchy/facet/source/>
PREFIX reg: <http://purl.org/linked-data/registry#>
SELECT ?o
WHERE {   food:_A059D   reg:submitter   ?o   }



PREFIX food: 
<http://data.food.gov.uk/codes/foodtype/hierarchy/facet/source/>
PREFIX reg: <http://purl.org/linked-data/registry#>
SELECT ?o
WHERE {   food:_A059D   reg:submitter   ?o   }

This is called a “bnode” - an RDF node that has an identifier that is only meaningful 
inside of the RDF database

For this reason, we cannot query it directly, we can only use it in the context of a 
variable within another query

It is used as an anonymous “placeholder” for an entity 
that has several properties of its own



PPREFIX food: 
<http://data.food.gov.uk/codes/foodtype/hierarchy/facet/source/>
PREFIX reg: <http://purl.org/linked-data/registry#>
SELECT ?p ?o
WHERE {
  food:_A059D reg:submitter ?bn .
  ?bn  ?p   ?o }



PPREFIX food: 
<http://data.food.gov.uk/codes/foodtype/hierarchy/facet/source/>
PREFIX reg: <http://purl.org/linked-data/registry#>
SELECT ?p ?o
WHERE {
  food:_A059D reg:submitter ?bn .
  ?bn  ?p   ?o }

A bit disappointing - not as informative as we might have hoped!

But, we now have a query that retrieves this information from 
food.gov, so we can now ask the question:

“Are there ANY entries in good.gov that have additional information 
related to my Host species?”



Federated Queries

Point at an external SPARQL endpoint using a “SERVICE” command

Looks like this:

SELECT xxx WHERE {

   SERVICE  <SPARQL-address-1> {

SELECT yyy WHERE {...}

    }

   SERVICE  <SPARQL-address-2> {

SELECT zzz WHERE {...}

    }

}



Federated Queries

Point at an external SPARQL endpoint using a “SERVICE” command

Looks like this:

SELECT xxx WHERE {

   SERVICE  <SPARQL-address-1> {

SELECT yyy WHERE {...}

    }

   SERVICE  <SPARQL-address-2> {

SELECT zzz WHERE {...}

    }

}

Importantly, you can use 
the same variable names 
in the WHERE clauses, 
and their values will be 
passed from one 
SPARQL endpoint to the 
other.



Our Federated Query

PREFIX dct: <http://purl.org/dc/terms/>
PREFIX food: 
<http://data.food.gov.uk/codes/foodtype/hierarchy/facet/source/>
PREFIX reg: <http://purl.org/linked-data/registry#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT ?h ?label ?date ?p ?o WHERE {

    { select distinct ?h ?label where {
        ?h rdfs:label ?label .
        { select distinct ?h where {
                ?h a <http://semanticscience.org/resource/host> .
             }
         }
       }
     }

     SERVICE <https://data.food.gov.uk/codes/system/query> {
     ?h dct:dateSubmitted ?date .
     ?h reg:submitter ?bn .
     ?bn  ?p ?o   
     }
}

Green is executed on our local database,  blue is executed at food.gov, ?h is passed between them



Results



Results



What have we achieved?  Things to note:

● I didn’t have to download their database to integrate it with my 
own

● For small intersections, this operation is surprisingly efficient 
(about 3 seconds)

● Because of this efficiency, I was able to ask the question ‘do you 
have any information of interest to me’ within a couple of minutes, 
simply using SPARQL to compare their database with mine.

● I could ask that question daily if I were comparing myself to a 
resource that updated frequently without having to download new 
versions of their data!  (less curatorial effort, just-in-time 
integration)

● The process for exploring and integrating with any other database 
on earth is exactly the same.



LOD Cloud 
Today



A lot of RDF is not SPARQL-able

● RDF has existed (as a recommendation) since 2004

○ A lot of data is already available in RDF, but as RDF records 
(downloadable) rather than in SPARQL

PREFIX sio: <http://semanticscience.org/resource/>
select distinct ?pathogen ?lsid where {
 ?pathogen a <http://semanticscience.org/resource/pathogen> .
 ?pathogen sio:has-identifier ?lsid
 } LIMIT 1

http://www.eu-nomen.eu/portal/taxon.php?GUID=urn:lsid:faunaeur.org:taxname:194388

http://www.eu-nomen.eu/portal/taxon.php?GUID=urn:lsid:faunaeur.org:taxname:194388


http://www.eu-nomen.eu/portal/taxon.php?GUID=urn:lsid:faunaeur.org:taxname:194388

http://www.eu-nomen.eu/portal/taxon.php?GUID=urn:lsid:faunaeur.org:taxname:194388


http://www.eu-nomen.eu/portal/taxon.php?GUID=urn:lsid:faunaeur.org:taxname:194388

urn:lsid:faunaeur.org:taxname:194388

This is an LSID (Life Sciences Identifier)

http://www.eu-nomen.eu/portal/taxon.php?GUID=urn:lsid:faunaeur.org:taxname:194388
http://www.eu-nomen.eu/portal/taxon.php?GUID=urn:lsid:faunaeur.org:taxname:194388


http://www.lsid.info/resolver/urn:lsid:marinespecies.org:taxname:127160.rdf

http://www.lsid.info/resolver/



http://www.lsid.info/resolver/urn:lsid:marinespecies.org:taxname:127160.rdf
This gives me a LOT of extra information about that pest!



http://www.lsid.info/resolver/urn:lsid:marinespecies.org:taxname:127160.rdf
This gives me a LOT of extra information about that pest!

The information in here would allow me to SPARQL-into additional 
global biodiversity or agricultural databases

HYBRID SOLUTION
(using code)

→ SPARQL Local Data

→ Federated SPARQL for remote SPARQL Endpoints

→ Download + in-memory SPARQL for published RDF 
files



PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>
PREFIX sio: <http://semanticscience.org/resource/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs:    <http://www.w3.org/2000/01/rdf-schema#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

select  * where {
 ?p a geo:Point .

?p geo:lat ?lat .
?p geo:long ?long .
FILTER(?latfloat > 50)
BIND(xsd:float(?lat) as ?latfloat) .
BIND(CONCAT("http://my.database.org/", str(?latfloat) ) as ?remoteurl)
BIND(IRI(?remoteurl) as $remote)

 } LIMIT 5 OFFSET 100

Cool query


