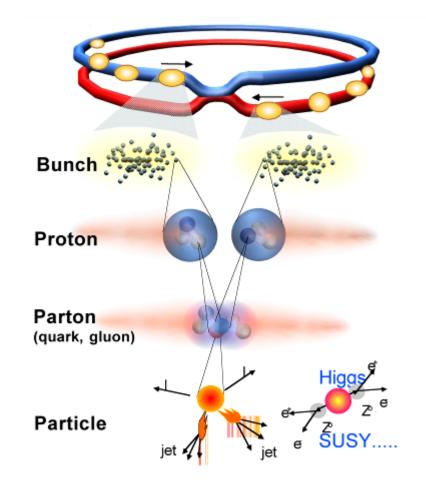


ARC-CE motivation and use case: LHC computing Tier1

Oxana Smirnova Lund University / NeIC

History of the Universe


A use case: particle physics at the Large Hadron Collider

The more we know, the more we don't

- Why do particles have the masses we observe? What is the origin of mass?
 - Solution of the Higgs particle at CERN helps
- Are there states of matter at very high density and temperature (Big Bang)?
 - Indications of the Quark-Gluon Plasma get stronger at CERN
- How many space-time dimensions do we live in?
- What is the nature of the Dark Matter and Dark Energy that dominate the Universe?
- Can gravity be added to the theory of the other known forces (Standard Model)?
- Are the known elementary particles fundamental or do they have a structure?
- Why is the electrical charge of the electron equal and opposite to that on the proton?
- Why are there three generations of quarks and leptons?
- Why is there overwhelmingly more matter than anti-matter in the Universe?
- ✤ Are protons unstable? Or, why are they stable?
- Do the neutrinos have mass, and if so, why are they so light?
- ✤ ... and many more ...

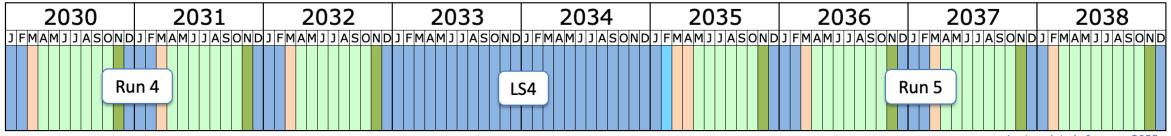
www.nordugrid.org

Large Hadron Collider: a discovery machine

Proton-Proton	2835 bunch/beam
Protons/bunch	10 ¹¹
Beam energy	7 TeV (7x10 ¹² eV)
Luminosity	10 ³⁴ cm ⁻² s ⁻¹

Crossing rate 40 MHz

Collisions rate $\approx 10^7 - 10^9$ Hz


New physics rate \approx .00001 Hz

Event selection: 1 in 10,000,000,000,000

neic

LHC operations schedule

Last updated: January 2022

Protons physics Ions Commissioning with beam Hardware commissioning/magnet training

Shutdown/Technical stop

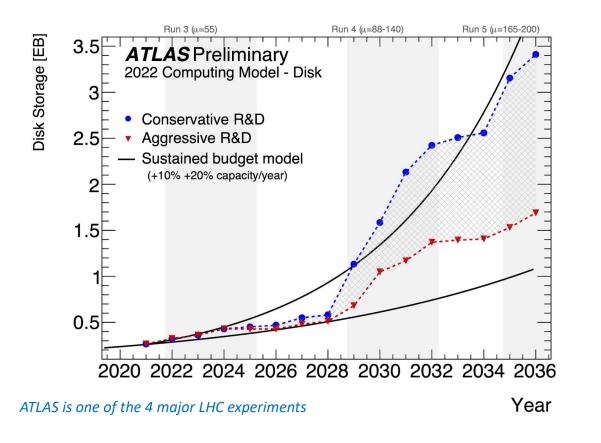
Sign (%)

29 May 2024

www.nordugrid.org

www.neic.no

4


Large Hadron Collider will deliver *Exabytes* of data by 2038 Tier-2 sites (about 140) Tier-1 sites _____10+ Gbit/s links KIT ASGC SARA-NIKHEF d) CCIN2P

Data are sent from **CERN** around the world for storage and processing

12 regional Tier1 centres at the core

29 May 2024

www.nordugrid.org

Data is the challenge

- Must be FAIR: Findable, Accessible, Interoperable and Reusable
- FAIRness requires a large and sustainable infrastructure
- Contrary to CPU/GPU cycles, storage can not be re-used

Solution: a *Data Lake* spanning countries + special middleware for data-intensive tasks

In Nordic countries: 20+ Petabytes

... and much more coming

NelC

of LHC data to crunch

29 May 2024

www.nordugrid.org

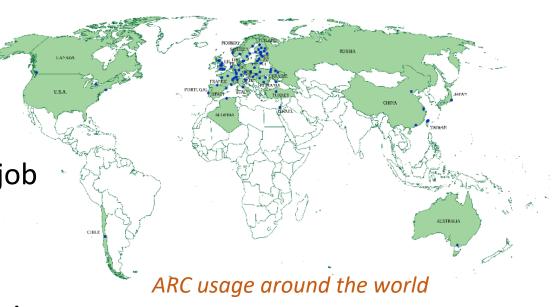
Set.

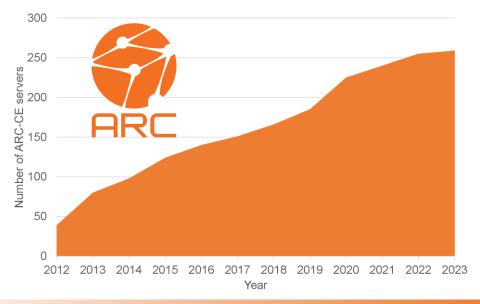
www.neic.no

7

Nordic Tier1 as a user-driven infrastructure

Established by LHC user communities in 4 Nordic countries


- Denmark, Finland, Norway and Sweden, total of 6 sites
- Storage in Slovenia and Switzerland, too
- □ 2 LHC experiments: ALICE and ATLAS
 - $\circ~$ Different requirements and workflows
 - Other non-LHC users: IceCube, EISCAT_3D (under investigation)
- □ A unique data center that spreads 4 countries
 - $\circ~$ No single Nordic data center could meet all the user needs
 - Not even now: disk and tape storage is still a unique requirement
 - Services are pledged by the Nordic countries via 4 dedicated MoUs with CERN


Nordic Tier1 implementation needs special middleware

- Key design principle: CPU cycles decoupled from storage
 - CPU cycles provided via national allocations
 - Storage (disk and tape) provided on a more long-term basis
 - Multiple data centres across several countries provide the services
- Key middleware requirement: Tier1 must present itself as a single site to the users
 - Single storage entry point implemented by dCache
 - Data must be pre-cached for processing implemented by ARC-CE
 - Internal accounting implemented by SGAS
 - Nordic Tier1 contributes to this middleware development

ARC-CE: Compute Element

- ARC: Advanced Resource Connector
 - Implements standard external interface for job submission to a computing resource
 - Complete with data stage-in, stage-out and caching
- ARC-CE is also used as a conventional Grid Compute Element
 - Decoupling from storage and worker nodes makes it suitable for HPC
 - Pluggable interface to any batch system
 - REST interface for external communications
 - Together with ARC Control Tower (aCT) can be used to handle classical HPC workflows

www.nordugrid.org