
Linux tuning
Various knobs that might be relevant for server/HPC workloads

Niklas Edmundsson, HPC2N

Disclaimer(s)

• Everything in this presentation has been tested/used on Ubuntu
10.04 ... 20.04 LTS, RHEL/CentOS 6, 7 (unless noted otherwise)

• Most likely also applies to newer Linux distros/kernels, but check
defaults before you start turning knobs.

• There's likely lot of stuff missing, I've deliberately left out things that
are mentioned in specific application READMEs etc.

sysctl: kernel.pid_max

• Default: 32768

• PID randomization causes this to be quickly exhausted, PID wraps
• Especially true on modern multi-core hardware running lots of

scripts/processes.

• Simple fix: Increase it to 999999
• One more digit shown in ps/top/etc
• Approx 30 times more “pid number space”, so wraps less often
• HPC2N has been using this for quite some time (5+ years) on everything

Linux, no issue discovered in any application (standard workload, HPC, user
stuff, etc)

• Can be increased further, but we haven't had the need (yet).

sysctl: kernel.core_pattern

• Default: core

• Annoyed by core files being overwritten if an application crashes
multiple times?

• Change to, for example, core.%e.%h.%p
• core.EXECUTABLE.HOSTNAME.PID

Process scheduling

• Default tuning is for laptop/desktop, ie focus on latency and interactive use

• Not quite optimal for server/HPC workloads since context switches are
expensive

• RHEL tuned: https://tuned-project.org/
• Or equivalent RHEL/CentOS-docco

• The throughput-performance profile suggests:
• kernel.sched_min_granularity_ns = 10000000
• kernel.sched_wakeup_granularity_ns = 15000000

• Rolled out everywhere on HPC2N
• Also on cluster when upgraded to Ubuntu Focal, but no performance followup has

been made (lost in the pandemic...)

https://tuned-project.org/

sysctl:s for ARP cache garbage collection

• On large IP segments you often get many ARP-entries

• If garbage collection happens too early/often machines
communicating are forced to do ARP requests instead of useful work.

• Defaults tend to be geared towards small network segments

• HPC2N tuning increases defaults by a factor of 4-8

• Originally an adaption for Akka (672 nodes)

• Applied on all hosts

• For static nets/configs you can also increase the time interval
between garbage collection iterations

sysctl:s for ARP cache garbage collection (2)

IPv4

Minimum number of entries (default 128)

net.ipv4.neigh.default.gc_thresh1 = 1024

Soft maximum (default 512)

net.ipv4.neigh.default.gc_thresh2 = 2048

Hard maximum (default 1024)

net.ipv4.neigh.default.gc_thresh3 = 4096

Interval (default 30 seconds)

net.ipv4.neigh.default.gc_interval = 120

IPv6

net.ipv6.neigh.default.gc_thresh1 = 1024

net.ipv6.neigh.default.gc_thresh2 = 2048

net.ipv6.neigh.default.gc_thresh3 = 4096

net.ipv6.neigh.default.gc_interval = 120

sysctl: vm.min_free_kbytes

• The universal solve-it-all knob to turn whenever you see
dmesg/syslog "alloc failed" messages from the kernel

• Shows up in various best practices all over the place

• HPC2N
• Our typical tuning is to increase to a value that corresponds to approx 0.5

seconds of maximum network bandwidth
• If you still get "alloc fail" messages, try doubling it again

Reserve more free memory to be able to handle network traffic bursts better.

Rough rule: size to be able to handle 0.5s burst.

vm.min_free_kbytes = 524288

Writing (kernel)-buffers to disk

• A lot of tuning advice you find is about increasing write buffers
• The tuned throughput-performance profile for example

• Big write buffers has its merits
• Big files that are written, modified and then copied elsewhere and you want to avoid

IO for the temporary files.
• Intermittent writes where background flush catches up in the breaks.
• Etc

• However, big write buffers makes the situation worse if you have
continuous flows, big files and not enough IO capacity
• “write storms”

• Many (file) server workloads perform better if you instead decrease the
buffers

Writing (kernel)-buffers to disk (2)

• vm.dirty_background_ratio alt. vm.dirty_background_bytes
• Defaults to background writes starting at 10% RAM used
• Troublesome for machines where IO performance is close to network

bandwidth, when writes start the machine never catches up to empty the
buffers.

• vm.dirty_ratio alt. vm.dirty_bytes
• Defaults to 20% of RAM
• Troublesome when hit, all writing processes freezes until everything is

written.
• Even more painful if application has a timeout for writes

• vm.dirty_expire_centisecs and vm.dirty_writeback_centisecs
• Time based trigger for the above

Writing (kernel)-buffers to disk (3)

• Worst case scenario: dCache tape pools
• Transfers data between tape (TSM) and other dCache pools.

• Buffered on local disk.

• Tape transfers have a continuous speed

• Default buffer settings usually causes data to be written in bursts, affecting
other activity (ie transfers to/from tape).
• Yes, also happens with flash-based systems.

• Typical tuning to improve the situation is to lower buffers
• Lower background limits so writes starts earlier

• You want more margin between dirty_background and the hard dirty limit

• Take care not to lower it too much, can cause file fragmentation

TCP window size tuning

• Linux default is max 4 MB autotuned TCP-windows

• Not enough for 10/25G hosts doing non-local traffic

• Not enough for (most) 100G hosts doing local traffic

• Cause: Bandwidth-delay product
• Amount of data en route, ie speed * RTT

• Common bad workaround: "I must use multiple transfers/threads"

• Expect needing 64MB or more within Europe

TCP window size tuning (2)

• Tuned with sysctl, applies for new connections

• Don't touch net.core.[rw]mem_max !
• Used only by application that "knows best" and uses setsockopt() to fiddle with the buffer size,

that disables the autotuning with bad results.

• Modify the net.ipv4.tcp_rmem and net.ipv4.tcp_wmem sysctl:s
• Change only the rightmost value.
• Note that the value set for the read buffer typically needs to be 50% larger than the wanted TCP

window size due to overhead.

Typical defaults, listed by sysctl net.ipv4.tcp_rmem net.ipv4.tcp_wmem:

net.ipv4.tcp_rmem = 4096 87380 6291456

net.ipv4.tcp_wmem = 4096 16384 4194304

#

Tuning for 64MiB tcp windows, with similar tcp_rmem overhead as default:

net.ipv4.tcp_rmem = 4096 87380 100663296

net.ipv4.tcp_wmem = 4096 16384 67108864

BBR congestion control

• Default Linux congestion control has problem dealing with links
having spurious high package loss.
• Typical (over)reaction: slow ramp up from full stop

• Other symptoms: Low transfer speeds without apparent reason

• BBR is able to detect spurious loss and reacts in a more appropriate
manner.

• BBR is available in Linux distributions with a sufficiently recent kernel,
for example Ubuntu 18.04, RHEL 8, Debian 10, and more.

• Highly recommended to enable everywhere
• On HPC2N, enabled on everything from Ubuntu 18.04 and up

