NelC Workshop 01 June 2022
Quant(i)n Computing
and Jake Muff LUMI
CSC - IT Center for Science jake.muff@csc.fi

Quantum computing activities at CSC

Enabling the uptake of quantum computing among our customer base
o Quantum computing courses and webinars, public outreach
Quantum computers will merge with supercomputers, not replace them
o Combine classical high-performance computing and quantum computing:
"best of both worlds"
LUMI is an ideal platform for hybrid HPC+QC
o pre-exascale (550+ PFLOPS) supercomputer
In the process of integrating several quantum computers to LUMI
o Important to provide our users with a broad selection of different quantum resources, as soon as possible
o Kvasi, the Atos QLM 30+ qubit emulator available since 2020

LUMI-Q

Quantum computing activities at CSC

Enabling the uptake of quantum computing among our customer base
o Quantum computing courses and webinars, public outreach

LUM I-Q

Quantum computers will merge with supercomputers, not replace them
o Combine classical high-performance computing and quantum computing:
"best of both worlds"
LUMI is an ideal platform for hybrid HPC+QC
o pre-exascale (550+ PFLOPS) supercomputer
In the process of integrating several quantum computers to LUMI
o Important to provide our users with a broad selection of different quantum resources, as soon as possible
o Kvasi, the Atos QLM 30+ qubit emulator available since 2020

EuroHPC LUMI <-> Chalmers/WACQT QAL 9000

30.3.2022: First quantum job submitted through the LUMI queueing system

- Connected one LUMI-C node in Finland to the QAL 9000 QC in Sweden, and successfully ran a cross-border quantum job

Henrik Nortamo (CSC), Nicola Lo Gullo (VTT/CSC) Miroslav Dobsicek (Chalmers), Ville Ahlgren (CSC, zoom)

Quantum Circuit Diagrams

- Quantum Algorithms are often shown through circuit diagrams
- One can use either symbols or names; for example the X

$$
|0\rangle=\binom{1}{0}, \quad|1\rangle=\binom{0}{1}
$$

A circuit diagram for NOT on $|0\rangle$ would then look like:

The Hadamard Gate

H

- Quantum Gate which transforms a qubit from a specific state into a superposition of two states
- $H|0\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)\binom{1}{0}=\frac{1}{\sqrt{2}}\binom{1+0}{1+0}=\frac{1}{\sqrt{2}}\binom{1}{1}=\frac{|0\rangle+|1|}{\sqrt{2}}$
- Note: The square of the amplitude is the probability of the state I.e
- $\alpha|0\rangle+\beta|1\rangle ;|\alpha|^{2}+|\beta|^{2}=1$
- $|\alpha|^{2}$ to be in state $|0\rangle$ and $|\beta|^{2}$ to be in state $|1\rangle$
- The sum must always be 1

$$
H:=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

Superposition

Qubits can be in a quantum mechanical superposition of all values simultaneously

The difference between bits and qubits grows more pronounced with increasing (qu)bit count:
2 bits can describe 4 different states: 00, 01, 10, 11
2 qubits can describe all 4 states at the same time 3 bits can describe $2^{3}=2 \times 2 \times 2=8$ different states: 000,001,010,011, \ldots
3 qubits can describe all 8 states at the same time
20 qubits can describe a million states, etc...
The different states can represent different inputs, on which the computer performs some computation

Measurement

- Even if several inputs can be processed at once, only one answer will emerge from the computer when you measure the result
$\cdot \alpha|0\rangle+\beta|1\rangle \rightarrow Q P \alpha^{\prime}|f(0)\rangle+\beta^{\prime}|f(1)\rangle \rightarrow \operatorname{cor}_{f(1)}$
- The answer depends on the amplitudes $\boldsymbol{\alpha}^{\prime}, \boldsymbol{\beta}^{\prime}$
- \mid amplitude $\left.\right|^{2}=$ probability; $|\alpha|^{2}+|\beta|^{2}=100 \%$
- A quantum computer is not deterministic
- In general, different answers for the same input
- This really is a feature, not a bug!

Accessing the notebooks

Open a browser on your laptop and navigate to notebooks.csc.fi

Login with the account name given to you - guestNN@neic

The password is quantum4all

Scroll down to myQLM 1.2.2 notebooks and click Launch New at the bottom.

Click Open in Browser. Navigate to Course Material \rightarrow 2022-NeIC \rightarrow Notebook-01

Learn, emulate, and develop quantum programming algorithms with this ready-made Jupyter environment of myQLM, the light-weight version of the Atos QLM. For advanced features, check out Kvasi, the Quantum Learning Machine.

To get started, go to the myqlm-notebooks folder, open the overview.ipynb notebook, and check out the myQLM documentation.

Download your results!
Newer version (1.5.1) is available at notebooks-beta.rahtiapp.fi
Lifetime: 8h

State	Name	Time Left	Access	Actions	Details
	pb-ian-the- luminous	$7 h 59 \mathrm{~m}$	ヤOpen in browser	\times Destroy	Details

> Launch new

Remember to save your edited notebook!

