NeIC Workshop 01 June 2022 Quantum Computing and Programming Jake Muff - LUMI CSC – IT Center for Science jake.muff@csc.fi

ICT Solutions for Brilliant Minds

CSC

Quantum computing activities at CSC

Enabling the uptake of quantum computing among our customer base

^o Quantum computing courses and webinars, public outreach

Quantum computers will *merge* with supercomputers, not replace them

Combine classical high-performance computing and quantum computing:
"best of both worlds"

LUMI is an ideal platform for hybrid HPC+QC

⁰ pre-exascale (550+ PFLOPS) supercomputer

In the process of integrating several quantum computers to LUMI

- Important to provide our users with a broad selection of different quantum resources, as soon as possible
- 0 Kvasi, the Atos QLM 30+ qubit emulator available since 2020

Quantum computing activities at CSC

Enabling the uptake of quantum computing among our customer base

Quantum computing courses and webinars, public outreach

Quantum computers will *merge* with supercomputers, not replace them

 Combine classical high-performance computing and quantum computing: "best of both worlds"

LUMI is an ideal platform for hybrid HPC+QC

⁰ pre-exascale (550+ PFLOPS) supercomputer

In the process of integrating several quantum computers to LUMI

- Important to provide our users with a broad selection of different quantum resources, as soon as possible
- Kvasi, the Atos QLM 30+ qubit emulator available since 2020

CSC

EuroHPC LUMI <-> Chalmers/WACQT QAL 9000

30.3.2022: First quantum job submitted through the LUMI queueing system

 Connected one LUMI-C node in Finland to the QAL 9000 QC in Sweden, and successfully ran a cross-border quantum job

Henrik Nortamo (CSC), Nicola Lo Gullo (VTT/CSC) Miroslav Dobsicek (Chalmers), Ville Ahlgren (CSC, zoom)

Quantum Circuit Diagrams

- Quantum Algorithms are often shown through circuit diagrams
- One can use either symbols or names; for example the X

 $|0\rangle = \begin{pmatrix} 1\\ 0 \end{pmatrix}, \quad |1\rangle = \begin{pmatrix} 0\\ 1 \end{pmatrix}$

A circuit diagram for NOT on |0) would then look like:

The Hadamard Gate

 Quantum Gate which transforms a qubit from a specific state into a superposition of two states

H

 $H := \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$

•
$$H|0\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1+0 \\ 1+0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{10\rangle + |1\rangle}{\sqrt{2}}$$

- Note: The square of the amplitude is the probability of the state I.e
 - $\alpha |0\rangle + \beta |1\rangle; |\alpha|^2 + |\beta|^2 = 1$
 - $|\alpha|^2$ to be in state $|0\rangle$ and $|\beta|^2$ to be in state $|1\rangle$
 - The sum must always be 1

Superposition

Qubits can be in a quantum mechanical **superposition** of all values simultaneously

The difference between bits and qubits grows more pronounced with increasing (qu)bit count: 2 bits can describe 4 different states: 00, 01, 10, 11 2 qubits can describe all 4 states at the same time 3 bits can describe $2^3 = 2 \times 2 \times 2 = 8$ different states: 000, 001, 010, 011, ... 3 qubits can describe all 8 states at the same time 20 qubits can describe a *million* states, *etc...*

The different states can represent different inputs, on which the computer performs some computation

Measurement

 Even if several inputs can be processed at once, only one answer will emerge from the computer when you measure the result
f(0)

•
$$\alpha|0\rangle + \beta|1\rangle \rightarrow OPU \rightarrow \alpha'|f(0)\rangle + \beta'|f(1)\rangle$$

- The answer depends on the **amplitudes** α ', β '
- $|amplitude|^2 = probability; |\alpha|^2 + |\beta|^2 = 100\%$
- A quantum computer is not deterministic
- In general, different answers for the same input
- This really is a feature, not a bug!

Accessing the notebooks

Open a browser on your laptop and navigate to notebooks.csc.fi

Login with the account name given to you – guestNN@neic

The password is **quantum4all**

Scroll down to *myQLM 1.2.2 notebooks* and click *Launch New* at the bottom.

Click Open in Browser. Navigate to Course Material \rightarrow 2022-NelC \rightarrow Notebook-01

myQLM 1.2.2 notebooks

Learn, emulate, and develop quantum programming algorithms with this ready-made Jupyter environment of myQLM, the light-weight version of the Atos QLM. For advanced features, check out Kvasi, the Quantum Learning Machine.

To get started, go to the *myqlm-notebooks* folder, open the *overview.ipynb* notebook, and check out the myQLM documentation.

Download your results!

Newer version (1.5.1) is available at notebooks-beta.rahtiapp.fi

Lifetime: 8h

