Discussion: MetaHub

Christian Kniep, NelC’22

Goal

What do we want to achieve?

1. ‘module load is setup locally and is executed at RUNTIME

2. Since a container (ideally) only has a single stack/target in them, we need to
do it differently

3. MetaHuUb might help

MetaHub Registry

Christian Kniep, ISC’22

Container Performance

Picking the right binary...

Without Containers

Picking the right binary for a given HW architecture usually comes down to:
$ module load gromacs:2021.5

It’s set up and maintained by the System Admins and it’'s a RUNTIME decision made
based on the current system.

With Containers

One way of doing it is to create with the same RUNTIME decision made
within the container.
Copying the concept over to container land.

gromacs/gromacs:2021.5

entrypoint.sh

$ docker run -ti gromacs/gromacs:2021.5 cat /gromacs/bin/gmx
#!/bin/bash

FLAGS= cat /proc/cpuinfo | grep ~flags | head -1
ARCH="SSE2"

if echo $FLAGS | grep " avxb12f " > /dev/null && test -d /gromacs/bin.AVX_512 \
&& echo " /gromacs/bin.AVX_512/identifyavx512fmaunits” | grep "2" > /dev/null; then

ARCH="AVX_b12"
elif echo $FLAGS | grep " avx2 " > /dev/null && test -d /gromacs/bin.AVX2_256; then
ARCH="AVX2_256"

elif echo $FLAGS | grep " avx " > /dev/null && test -d /gromacs/bin.AVX_256; then
ARCH="AVX_256"

/gromacs/bin.${ARCH}/gmx $Q@

Container Performance

Picking the right birary container image...
With Containers #2

Picking the right container image when submitting the job.

$ srun -N2 sarus run —-—-mpi gnib/gromacs-2021.5_qgcc-7.3.1:skylake_avx512 benchMEM.tpr
$ srun -N2 sarus run --mpi gnib/gromacs-2021.5_gcc-7.3.1:zen3 benchMEM. tpr

This implies that the submitter has clear expectations (/or constraints) regarding the
hardware which is going to be used.

Putting bandage on the problem

Make the decision at a different level:

* RUNTIME: on each node just before execution (configured for each runtime/node),
« SCHEDULER: when assigning the task (configured for each scheduler)

Container Performance

Pushing module load to the registry

Make the registry handle module load

W $ docker login metahub-registry.org -u cascadelake
— NIB Nl Login Succeeded
—C artitactory $ docker run metahub-reqistry.org/qgnib/featuretest:latest
' W % | > This container is optimized for: arch:cascadelake
Reports & .”.”
Gomplénce _;." - \{,n‘t,] wve & docker login metahub-registry.org -u zen3
NINS :
Community e Login Succeeded
| $ docker run metahub-reqistry.org/qgnib/featuretest:latest

>> This contalner 1s optimized for: arch:zen3

1 manifests:
2 - name: gromacs
: tag: 20215 Users are associated with profiles. Profiles define filters...
5 - image: gnib/gromacs-2021.5_gcc-7.3.1:x86_64_v2 1 profile:
6 - image: gnib/gromacs-2021.5_gcc-7.3.1:x86_64_v4 2 name: library/cascadelake:latest
7 platform: 3 actions:
8 features: [arch:cascadelake] 4 - name: manifest-filter
9 - image: qnib/gromacs-2021.5_gcc-11.3.0:zen3 5 event: post-manifest-list-get
10 platform: 6 args:
o features: [aPCh:Z—ensl 7 select: .manifests .[] .platform .features
8 value: arch:cascadelake

http://metahub-registry.org/qnib/featuretest:latest
http://metahub-registry.org/qnib/featuretest:latest

Dynamic Layer Addition

There is more you can do with this concept

Make the registry add layers dynamically

$ docker run metahub-registry.org/qnib/featuretest:latest aws —version rmaseq:dev
59bf1c3509f3: Pull complete ~ aseq-dov
clac79912c87: Pull complete -/, —

exec: "aws": executable file not found in $PATH: unknown.

awscli:v1

$ docker login metahub-registry.org --user aws/cli
Login Succeeded
$ docker run metahub-registry.org/gnib/featuretest:latest aws —version

59bf1c3509f3: Already exists D ve/elis Latest
clac79912c87: Already exists o
df9209388f04a: Pull complete

dlefb575b3el6: Pull complete ﬁegzzztz:s?lzngzjizztiP::E:

event: post-manifest-get
args:
aws—cli/1.24 0 Python/3.9.7 Linux/5.10.109-104.500.amzn2.x86_64 botocore/1.26.0

[

layerRepository: gnib/layer-awscli

O 00 3 O O N NN

MetaHub Community Edition

Build a set of HPC manifest collection for the benefit of all

Inspired by nf-core, Spack, EasyBuild. Curate a collection for the HPC (and adjacent)

communities, by the communities.

C & gitlab.com/gnib-metahub/community-edition

@ GitLab = ven

B3 profiles initial commit

v+ README.md initial commit

[) README.md

Community Edition

GitOps driven set of manifest collections and profiles to drive the MetaHub Community |
commonly used and public container images, for everyone to use

Overview

This repository has two top-level direcories:

2. profiles : contains the collection of profiles

Public manifest collections for commonly
used tools and applications (GROMACS,
OpenFoam, etc.)

Public profiles for common architectures,
use-cases (CPU, GPU, configuration)

Public profiles for common dynamic layers
(entry points, awscli, ...)

Conclusion
What did we learn

1. Preparing all possible permutations for targets/configuration

2. use (automatic) logins to have MetaHub pick the right container

