
Christian Kniep, NeIC’22

Discussion: MetaHub
‚Container in HPC Workshop 101‘

Goal
What do we want to achieve?

1. `module load` is setup locally and is executed at RUNTIME

2. Since a container (ideally) only has a single stack/target in them, we need to
do it differently

3. MetaHub might help

Christian Kniep, ISC’22

MetaHub Registry
A smart Registry Proxy

Container Performance
Picking the right binary…

It’s set up and maintained by the System Admins and it’s a RUNTIME decision made
based on the current system.

$ module load gromacs:2021.5

Without Containers

With Containers
One way of doing it is to create a fat container with the same RUNTIME decision made
within the container. 
Copying the module load concept over to container land.

Picking the right binary for a given HW architecture usually comes down to:

gromacs/gromacs:2021.5
entrypoint.sh
$ docker run -ti gromacs/gromacs:2021.5 cat /gromacs/bin/gmx
!#!/bin/bash
FLAGS=`cat /proc/cpuinfo | grep ^flags | head -1`
ARCH="SSE2"
if echo $FLAGS | grep " avx512f " > /dev/null !&& test -d /gromacs/bin.AVX_512 \
 !&& echo `/gromacs/bin.AVX_512/identifyavx512fmaunits` | grep "2" > /dev/null; then
 ARCH="AVX_512"
elif echo $FLAGS | grep " avx2 " > /dev/null !&& test -d /gromacs/bin.AVX2_256; then
 ARCH="AVX2_256"
elif echo $FLAGS | grep " avx " > /dev/null !&& test -d /gromacs/bin.AVX_256; then
 ARCH="AVX_256"

/gromacs/bin.${ARCH}/gmx $@

Container Performance
Picking the right binary container image…

With Containers #2
Picking the right container image when submitting the job.
$ srun -N2 sarus run !--mpi qnib/gromacs-2021.5_gcc-7.3.1:skylake_avx512 benchMEM.tpr
$ srun -N2 sarus run !--mpi qnib/gromacs-2021.5_gcc-7.3.1:zen3 benchMEM.tpr

Make the decision at a different level:

• RUNTIME: on each node just before execution (configured for each runtime/node),

• SCHEDULER: when assigning the task (configured for each scheduler)

This implies that the submitter has clear expectations (/or constraints) regarding the
hardware which is going to be used.

Putting bandage on the problem

Container Performance
Pushing module load to the registry

Make the registry handle module load
$ docker login metahub-registry.org -u cascadelake
Login Succeeded
$ docker run metahub-registry.org/qnib/featuretest:latest
!>> This container is optimized for: arch:cascadelake

$ docker login metahub-registry.org -u zen3
Login Succeeded
$ docker run metahub-registry.org/qnib/featuretest:latest
!>> This container is optimized for: arch:zen3

Users are associated with profiles. Profiles define filters…

http://metahub-registry.org/qnib/featuretest:latest
http://metahub-registry.org/qnib/featuretest:latest

Dynamic Layer Addition
There is more you can do with this concept

Make the registry add layers dynamically
$ docker run metahub-registry.org/qnib/featuretest:latest aws —version
59bf1c3509f3: Pull complete
c1ac79912c87: Pull complete
exec: "aws": executable file not found in $PATH: unknown.

$ docker login metahub-registry.org !--user aws/cli
Login Succeeded
$ docker run metahub-registry.org/qnib/featuretest:latest aws —version
59bf1c3509f3: Already exists
c1ac79912c87: Already exists
df9b9388f04a: Pull complete
d1ef575b3e16: Pull complete
03e1d868cf49: Pull complete
aws-cli/1.24.0 Python/3.9.7 Linux/5.10.109-104.500.amzn2.x86_64 botocore/1.26.0

}

MetaHub

awscli:v1

rnaseq:dev*

rnaseq:dev

MetaHub Community Edition
Build a set of HPC manifest collection for the benefit of all

Inspired by nf-core, Spack, EasyBuild. Curate a collection for the HPC (and adjacent)
communities, by the communities.

1. Public manifest collections for commonly
used tools and applications (GROMACS,
OpenFoam, etc.)

2. Public profiles for common architectures,
use-cases (CPU, GPU, configuration)

3. Public profiles for common dynamic layers
(entry points, awscli, …)

Conclusion
What did we learn

1. Preparing all possible permutations for targets/configuration

2. use (automatic) logins to have MetaHub pick the right container

