CScC

ICT Solutions for
Brilliant Minds

Programming for LUMI GPUs

Dr. Jussi Heikonen, CSC - IT Center for Science Ltd.

LUMI, the Queen of the North

LUMI is aTier-o GPU-

accelerated supercomputer that
enables the convergence of high-

performance computing,

artificial intelligence, and high-

performance data analytics.

GPU

Supplementary CPU
partition: ~200,000 AMD
EPYC Milan CPU cores

Possibility for combining
different resources within a
single run. HPE Slingshot
technology.

30 PB encrypted object
storage (Ceph) for storing,
sharing and staging data

LUMI-C: Partition
x86
Partition

LUMI-K:

Container High-speed
Cloud interconnect
Service

LUMI-Q:
Emergin
e LUMI-O:
Object
Storage
Service

\./

LUMI-G: /\

LUMI-D:
Data

Analytics mmm—e—e.

Tier-o GPU partition: over
550 Pflop/s powered by
AMD Instinct Ml25oX GPUs

Partition

LUMI-F:
Accelerated
Storage

Interactive partition with 32
TB of memory and graphics
GPUs for data analytics and
visualization

LUMI-P:
Lustre
Storage

7 PB Flash-based storage
layer with extreme 1/O
bandwidth of 2 TB/s and
IOPS capability. Cray
ClusterStor E1000.

8o PB parallel file system

CsC

LUMI-G nodes

*The GPU partition will consist of 2560 nodes, each node
with one 64 core AMD Trento CPU and four AMD MI250X
GPUs.

*Each MI250X GPU consists of two compute dies, each
with 110 compute units each, and each compute unit has
64 stream processors for a total of 14080 stream
processors.

*Each GPU node features four 200 Gbit/s network
interconnect cards, i.e. has 800 Gbit/s injection bandwidth.
*The MI250X GPU comes with a total of 128 GB of HBM2e
memory offering over 3.2 TB/s of memory bandwidth.

*A single MI250X card is capable of delivering 42.2 To Slingshot

TFLOP/s of performance in the HPL benchmarks.

*The committed Linpack performance of LUMI-G is 375 2560 nodes with 4 x MI250X + 1 x AMD
Pflop/s.

Trento processor, 512 GB host memory
and 512 GB device memory
4 X 200 Gbit/s NIC

#3 Top500 ——
#3 Green500 Q2022 Finl
#3 HPCG Pilot use co3nfiguration

Extended beta testing GA 09/22

-

LUMI timeline

(@) —
N N
S S
| | ?
1 1
Q2/2022
System pro€urement: — [—ol[—2] 3stphase - 12 cabinets of
November 2019 — August 2020 == Q4/2021 — LUMI-G
. . -LUMI-C, P, - LUMI-C NIC
Data center preparation ready Q1/2020 F, D upgrade
(\ - Early Access
| | Platform Rest of LUMI-G

[’
/ GA 01/01/22 Cabinets

GPU basics

* CPU = host, GPU = device
* CPU offloads computing intensive parts to GPUs

* The power of a GPU comes from a very high number of
cores/threads/stream processors
o Ml25oX has 14080 stream processors

* To utilize a GPU efficiently the programmer has to expose enough
SIMD (Single Instruction Multiple Data) parallelism

* Memory access key to performance
o CPU-GPU transfers are “slow”
o Contiguous access & data reuse are essential

* Use GPU enabled libraries

cscC

GPU programming models

 CUDA ¢ OpenACC
o NVIDIA * NVIDIA (AMD)
o C++

e (C++, Fortran

* Pragma/directive based
* OpenMP
* HIP * NVIDIA & AMD

o AMD version of CUDA, « C++, Fortran

almost 1-1 mapping _ _
oRuns on Nvidia hw too * Pragma/directive based

(requires ROCm)

o Fortran: CUDAFortran
o Low level, high performance

o C++ _ * OneAPI/DPC++
o Fortran: HIPFort (kernels in e Intel dard
Fort ntel (open standard)
* (hip)SYCL, Kokkos, ...
* Generic

Cs

cscC

HIP (Heterogeneous-Compute Interface for Portability)

* HIP is basically AMD’s version of CUDA: there is almost 1-1 correspondence
between CUDA and HIP: If you know CUDA, you know HIP

oNot all CUDA features are supported however
* For C++ only

* Hipify: source-to-source translator (a perl script) that converts CUDA to HIP
(in place)

* Runs on Nvidia too but requires installing the HIP ROCm stack

* Hipfort: Fortran bindings for APls (memory allocation and copies etc.)

oKernels need to be written in C++ and called through interfaces

cscC

LUMI/AMD GPU programming: starting from scratch

Use C++
o Largest choice of GPU programming paradigms, tools, libraries
o New stuff typically becomes first available for C++

For best performance
o HIP or hipified CUDA
o Takes some effort
o Portability good (but requires ROCm on Nvidia hw)

* Foreasier programming
o OpenMP (OpenACC will NOT be available for C++!)
o Performance: may be lower than with HIP
o Portability good

Frameworks promise good performance & portability
o hipSYCL (under construction),
o Kokkos

-

cscC

LUMI/AMD GPU programming: porting existing GPU codes

o C++
o CUDA: hipify
o OpenMP: as is
o OpenACC: Convert to OpenMP or HIP (GPUfort?)
o (Kokkos: as is)

* Fortran
o CUDAfortran

o Convert memory allocation and copy etc. Calls to hipfort
o Convert kernels to C++ and HIP (or CUDA & and hipify)
o C++ kernels are callable from Fortran

o OpenMP: as is
o OpenACC: Version 2.7 supported currently
o Gpufort? Next slide ...

GPU

-ORT

CUDA Fortran

Quantum Espresso

QpenACC Fortran

VASP, ICON, WRF, Dynamico, RAMSYS
- .

GPUFORT

Source-to -source translator

OpenACC -> HIP
OpenMP -> HIP
CUF -> HIP

Device code Host code
Fortran

OpenMP 4.5+

HIPFORT | Gcc/cray

GPUFORT | Dominic E. Charrier, Mazda Sabony | 5th EAGE
Workshop on HPC

LUMI/AMD GPU programming: porting existing CPU codes to Al
GPUs

* C++: See Starting from scratch

* Fortran
oFor performance: HIP & hipfort

o C++ kernels/device code
o Portability requires ROCm on Nvidia hw
oFor easier programming: OpenMP
o Portability good
o0OpenACC not recommended due to limited support

oKokkos & hipSYCL?

Portability considerations

* C++ easier than Fortran

* OpenMP is “easy” but there may be some performance hit
* CUDA & hipify

* GPUfort may make things easier

* Keep device code isolated to minimize porting effort

Cs

CSC

facebook.com/CSCfi

We are hiring!

* https://www.csc.fi/en/careers twitter.com/CSC

linkedin.com/company/csc-—it-center-for-science

ODHOD

github.com/CSCfi

Kuvat CSC:n arkisto, Adobe Stock ja Thinkstock

