
Programming for LUMI GPUs

Dr. Jussi Heikonen, CSC – IT Center for Science Ltd.



High-speed 
interconnect

LUMI-G: 
GPU 

Partition LUMI-D: 
Data 

Analytics 
Partition

LUMI-F: 
Accelerated 

Storage

LUMI-P: 
Lustre

StorageLUMI-O: 
Object 

Storage 
Service

LUMI-Q:

Emerging 
tech

LUMI-K: 
Container 

Cloud 
Service

LUMI-C: 
x86 

Partition

LUMI, the Queen of the North

2

Tier-0 GPU partition: over 
550 Pflop/s powered by 
AMD Instinct MI250X GPUs

Supplementary CPU 
partition: ~200,000 AMD 
EPYC  Milan CPU cores

Interactive partition with 32 
TB of memory and graphics 
GPUs for data analytics and 
visualization

7 PB Flash-based storage 
layer  with extreme I/O 
bandwidth of 2 TB/s and 
IOPS capability. Cray 
ClusterStor E1000.

80 PB parallel file system

30 PB encrypted object 
storage (Ceph) for storing, 
sharing and staging data

LUMI is a Tier-0 GPU-
accelerated supercomputer that 
enables the convergence of high-
performance computing, 
artificial intelligence, and high-
performance data analytics.

Possibility for combining 
different resources within a 
single run. HPE Slingshot 
technology.



LUMI-G nodes

•The GPU partition will consist of 2560 nodes, each node

with one 64 core AMD Trento CPU and four AMD MI250X 

GPUs. 

•Each MI250X GPU consists of two compute dies, each

with 110 compute units each, and each compute unit has

64 stream processors for a total of 14080 stream

processors. 

•Each GPU node features four 200 Gbit/s network

interconnect cards, i.e. has 800 Gbit/s injection bandwidth.

•The MI250X GPU comes with a total of 128 GB of HBM2e 

memory offering over 3.2 TB/s of memory bandwidth. 

•A single MI250X card is capable of delivering 42.2 

TFLOP/s of performance in the HPL benchmarks. 

•The committed Linpack performance of LUMI-G is 375 

Pflop/s. 
2560 nodes with 4 x MI250X + 1 x AMD 
Trento processor, 512 GB host memory
and 512 GB device memory
4 x 200 Gbit/s NIC



LUMI timeline

Data center preparation ready Q1/2020

System procurement: 
November 2019 – August 2020

1st phase
Q4/2021
- LUMI-C, P, 
F, D
- Early Access 
Platform
GA 01/01/22

2
0
2
0

2
0
2
1

Q2/2022
- 12 cabinets of 
LUMI-G
- LUMI-C NIC 
upgrade

2
0
2
2

Q3/2022 Final
configuration
GA 09/22

Pilot use
Extended beta testing

Rest of LUMI-G 
cabinets

#3 Top500
#3 Green500
#3 HPCG



GPU basics

• CPU = host, GPU = device

• CPU offloads computing intensive parts to GPUs

• The power of a GPU comes from a very high number of 
cores/threads/stream processors
oMI250X has 14080 stream processors

• To utilize a GPU efficiently the programmer has to expose enough
SIMD (Single Instruction Multiple Data) parallelism

• Memory access key to performance
oCPU-GPU transfers are ”slow”
oContiguous access & data reuse are essential

• Use GPU enabled libraries



GPU programming models

• CUDA
oNVIDIA
oC++
oFortran: CUDAFortran
oLow level, high performance

• HIP
oAMD version of CUDA, 

almost 1-1 mapping
oRuns on Nvidia hw too

(requires ROCm)
oC++ 
oFortran: HIPFort (kernels in 

C++)

• OpenACC
• NVIDIA (AMD)
• C++, Fortran
• Pragma/directive based

• OpenMP
• NVIDIA & AMD
• C++, Fortran
• Pragma/directive based

• OneAPI/DPC++
• Intel (open standard)

• (hip)SYCL, Kokkos, …
• Generic



HIP (Heterogeneous-Compute Interface for Portability)

• HIP is basically AMD’s version of CUDA: there is almost 1-1 correspondence

between CUDA and HIP: If you know CUDA, you know HIP

oNot all CUDA features are supported however

• For C++ only

• Hipify: source-to-source translator (a perl script) that converts CUDA to HIP 

(in place)

• Runs on Nvidia too but requires installing the HIP ROCm stack

• Hipfort: Fortran bindings for APIs (memory allocation and copies etc.) 

oKernels need to be written in C++ and called through interfaces



LUMI/AMD GPU programming: starting from scratch

• Use C++
o Largest choice of GPU programming paradigms, tools, libraries
oNew stuff typically becomes first available for C++

• For best performance
oHIP or hipified CUDA
o Takes some effort
o Portability good (but requires ROCm on Nvidia hw)

• For easier programming
oOpenMP (OpenACC will NOT be available for C++!)
o Performance: may be lower than with HIP
o Portability good

• Frameworks promise good performance & portability
o hipSYCL (under construction), 
oKokkos



LUMI/AMD GPU programming: porting existing GPU codes

• C++
oCUDA: hipify

oOpenMP: as is

oOpenACC: Convert to OpenMP or HIP (GPUfort?)

o (Kokkos: as is)

• Fortran
oCUDAfortran

o Convert memory allocation and copy etc. Calls to hipfort

o Convert kernels to C++ and HIP (or CUDA & and hipify)

o C++ kernels are callable from Fortran

oOpenMP: as is

oOpenACC: Version 2.7 supported currently

oGpufort? Next slide …



10



LUMI/AMD GPU programming: porting existing CPU codes to 
GPUs

• C++: See Starting from scratch

• Fortran

oFor performance: HIP & hipfort

o C++ kernels/device code

o Portability requires ROCm on Nvidia hw

oFor easier programming: OpenMP

o Portability good

oOpenACC not recommended due to limited support

oKokkos & hipSYCL?



Portability considerations

• C++ easier than Fortran

• OpenMP is ”easy” but there may be some performance hit

• CUDA & hipify

• GPUfort may make things easier

• Keep device code isolated to minimize porting effort



facebook.com/CSCfi

twitter.com/CSCfi

linkedin.com/company/csc---it-center-for-science

Kuvat CSC:n arkisto, Adobe Stock ja Thinkstock

github.com/CSCfi

We are hiring!
• https://www.csc.fi/en/careers


