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The series of terms generates in principle all possible configurations for FCI, producing all possible 
ground and excited state correlations. The terms shown generate single (S) and double (D) excitations 
and gives the parametrised UCCSD trial-state approximation that we are using. The coefficients tpq and 
tpqrs are variational parameters determining the weight of the excited configuration. 
 
The UCCSD trial-state with fermionic operators must now be mapped onto qubit spin operators. 
Common transformations are Jordan-Wigner (JW), Bravyi-Kitaev (BK) and Parity, all designed to 
impose the anticommutation rules. The original UCCSD exponential is then expanded into exponentials 
of large numbers of products of Paul pin-operators acting on qubits. The parametrised initial trial state 
is then constructed through entangled quantum circuits: combinations of parametrised 1q-rotation 
gates and entangling CNOT gates. The size of the quantum circuit can finally be reduced by qubit 
reduction schemes and qubit tapering [7]. All this results in a state vector for the trial state. 
 
The fermionic operators in the Hamiltonian must also be expanded in products of Pauli spin-operators. 
The expectation value can then be calculated in two ways: (1) State-vector approach: direct calculation 
of <∑Hi> by matrix operations (QISKit state-vector backend); (2) Measurement approach: generating 
an ensemble of identical trial states and measuring the Pauli operators of the Hamiltonian terms Hi 
(Fig.1) (QISKit qasm HPC backend; or experimental q-HW backends).   
 

       
(a)             (b) 

Figure 1: The Variational Quantum Eigensolver (VQE) (1(a) [8]; 1(b) [Aspuru-Guzik et al.]). Figure 1(b) emphasises 
that there are two loops for updating the variational parameters: (i) an “internal” loop that optimises the 
variational (UCCSD) ansatz, and (ii) an “external” loop that minimises the energy. 
 
The QISKit gate lists involve the general parametrised Pauli operators for 1q-operations plus CNOT 
(controlled-X, cx), forming a universal set of quantum gate operations (see the Appendix).  
 
We illustrate the VQE in some detail by showing how it works for the 2-electron hydrogen molecule. 
The fermionic operators in the Hamiltonian  
 

 
are transformed into products of Pauli operators that can operate on qubits while conserving the 
anticommutation rules  
 

 
or explicitly (renaming the Pauli operators):  
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|cS that minimizes

hc j H j ci
hc j ci : ð3Þ

By varying the experimental parameters in the preparation of
|cS and computing the Rayleigh–Ritz quotient using QEE as
a subroutine in a classical minimization, one may prepare
unknown eigenvectors. At the termination of the algorithm, a
simple prescription for the reconstruction of the eigenvector is
stored in the final set of experimental parameters that define |cS.

If a quantum state is characterized by an exponentially large
number of parameters, it cannot be prepared with a polynomial
number of operations. The set of efficiently preparable states are
therefore characterized by polynomially many parameters, and
we choose a particular set of ansatz states of this type. Under
these conditions, a classical search algorithm on the experimental
parameters that define |cS needs only explore a polynomial
number of dimensions—a requirement for the search to be
efficient. One example of a quantum state parameterized by a
polynomial number of parameters for which there is no known
efficient classical implementation is the unitary coupled cluster
ansatz29

j Ci ¼ eT $Tw j Firef : ð4Þ

where |FSref is some reference state, usually the Hartree Fock
ground state, and T is the cluster operator for an N electron
system, defined by

T ¼ T1þT2þT3þ :::þTN ; ð5Þ

where

T1 ¼
X
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tr
pâwpâr ð6Þ

T2 ¼
X

pqrs

trs
pqâwpâwqârâs ð7Þ

and higher-order terms follow logically. It is clear that by
construction the operator (T$Tw) is anti-hermitian,
and exponentiation maps it to a unitary operator U ¼ eðT $TT Þ.
For any fixed excitation level k, the reduced cluster operator is

written as

TðkÞ ¼
Xk

i¼1

Ti: ð8Þ

In general no efficient implementation of this ansatz has yet been
developed for a classical computer, even for low-order cluster
operators, due to the non-truncation of the BCH series29.
However, this state may be prepared efficiently on a quantum
device. The reduced anti-hermitian cluster operator (T(k)$T(k)w)
is the sum of a polynomial number of terms—namely, it contains
a number of terms O(Nk(M$N)k), where M is the number of
single-particle orbitals. By defining an effective Hermitian
Hamiltonian H¼ i(T(k)$T(k)w) and performing the Jordan–
Wigner transformation to reach a Hamiltonian that acts on the
space of qubits, ~H, we are left with a Hamiltonian that is a sum of
polynomially many products of Pauli operators. The problem
then reduces to the quantum simulation of this effective
Hamiltonian, ~H, which can be done in polynomial time using
the procedure outlined by Ortiz et al.23 We note that while this
state preparation procedure utilizes tools from quantum
simulation, the total effective time of evolution is fixed by the
expansion coefficients trs

pq. This is in contrast to the normal
difficulties encountered in QPE, where simulations must be
carried out for times that are exponential in the desired bits of
precision.

While there is currently no known efficient classical algorithm
based on these ansatz states, non-unitary coupled cluster ansatz is
sometimes referred to as the ‘gold standard of quantum
chemistry’ as it is the standard of accuracy to which other
methods in quantum chemistry are often compared. The unitary
version of this ansatz is thought to yield superior results to even
this ‘gold standard’29.

Prototype demonstration. We have implemented the QPU using
integrated quantum photonics technology30. Our device, shown
schematically in Fig. 2, is a reconfigurable waveguide chip that
can prepare and measure arbitrary two-bit pure states using
several single-qubit rotations and one two-qubit entangling gate.
The state is path-encoded using photon pairs generated via a
spontaneous parametric downconversion process. State
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Figure 1 | Architecture of the quantum-variational eigensolver. In QEE, quantum states that have been previously prepared are fed into the quantum
modules, which compute /HiS, where Hi is any given term in the sum defining H. The results are passed to the CPU, which computes /HS. In the
quantum variational eigensolver, the classical minimization algorithm, run on the CPU, takes /HS and determines the new state parameters, which are
then fed back to the QPU.
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Fig. 2 The Variational Quantum Eigensolver (VQE) implements the Rayleigh-Ritz variational principle. Gate 
operations on the QHW creates a quantum state in the QHW register, described in terms of a state vector. 
Repeated application of rotation (Pauli) operators and subsequent measurements (state tomography) produces 
a distribution of energies that that are used for calculating the expectation value of the Hamiltonian – the 
energy.  

 
Figure 3 exemplifies the VQE-method in the simple case of the H2 molecule [3]. 

 

 
 

Fig. 3. The VQE exemplified for H2 molecule. The fermionic operators in the Hamiltonian are transformed into 
products of Pauli operators that can operate on qubits while conserving the anticommutation rules (Jordan-

Wigner (JW); Bravyi-Kitaev (BK); Parity). The trial function |j(q)> is constructed through a sequence of 
parametrized 1q rotations and entangling 2q gates applied to a suitable initial reference state. The Unitary 
Coupled Cluster Singles and Doubles (UCCSD) approximation creates the trial function via double excitations 
from the Hartree-Fock (HF) mean-field reference state |01>, building-in electron pair-correlation effects. The 

UCCSD-generating quantum circuit is given by a CNOT, an Rz(q) rotation, and another CNOT. 
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Variational quantum eigensolver - VQE

Rayleigh-Ritz = VQE

from exponentially costly precompilation [33]. When
implemented using a unitary coupled cluster (UCC) ansatz,
VQE cannot be efficiently simulated classically, and
empirical evidence suggests that answers are accurate
enough to predict chemical rates [19–23]. Because VQE
only requires short state preparation and measurement
sequences, it has been suggested that classically intractable
computations might be possible using VQE without the
overhead of error correction [22,23]. Our experiments
substantiate this notion; the robustness of the VQE to
systematic device errors allows the experiment to achieve
chemical accuracy.
Our second experiment realizes the original algorithm

for the quantum simulation of chemistry, introduced in
Ref. [2]. This approach involves Trotterized simulation [34]
and the quantum phase estimation algorithm (PEA) [35].
We experimentally perform this entire algorithm, including
both key components, for the first time. While PEA has
asymptotically better scaling in terms of precision than
VQE, long and coherent gate sequences are required for its
accurate implementation.
The phase estimation component of the canonical

quantum chemistry algorithm has been demonstrated in
a photonic system [36], a nuclear magnetic resonance
system [37], and a nitrogen-vacancy center system [38].
While all three experiments obtained molecular energies to
incredibly high precision, none of the experiments imple-
mented the propagator in a scalable fashion (e.g., using
Trotterization), as doing so requires long coherent evolu-
tions. Furthermore, none of these experiments used more
than a single qubit or qutrit to represent the entire molecule.
This was possible due to the use of the configuration basis,
which is not scalable but renders the experimental chal-
lenge much easier. Furthermore, all of these implementa-
tions applied the logic gates with a single, totally controlled
pulse, as opposed to compiling the algorithm to a universal
set of gates as we do.
There have been two previous experimental demonstra-

tions of VQE, first in a photonic system [19] and later in an
ion trap [39]. Both experiments validated the variational
approach, and the latter implemented an ansatz based on
unitary coupled cluster. All prior experiments focused
on either molecular hydrogen [36,37] or helium hydride
[19,38,39], but none of these prior experiments employed a
scalable qubit representation such as second quantization.
Instead, all five prior experiments represent the Hamiltonian
in a configuration basis that cannot be efficiently decom-
posed as a sum of local Hamiltonians, and then exponentiate
this exponentially large matrix as a classical preprocessing
step [19,36–39].
Until this work, important aspects of scalable chemistry

simulation such as the Jordan-Wigner transformation [40]
or the Bravyi-Kitaev transformation [41,42] had never been
used to represent a molecule in an experiment; however,
prior experiments such as Ref. [7] have previously used the

Jordan-Wigner representation to simulate fermions on a
lattice. In both experiments presented here, we simulate the
dissociation of molecular hydrogen in the minimal basis
of Hartree-Fock orbitals, represented using the Bravyi-
Kitaev transformation of the second quantized molecular
Hamiltonian [17]. As shown in Appendix A, the molecular
hydrogen Hamiltonian can be scalably written as

H ¼ g01þ g1Z0 þ g2Z1 þ g3Z0Z1 þ g4Y0Y1 þ g5X0X1;

ð1Þ

where fXi; Zi; Yig denote Pauli matrices acting on the ith
qubit and the real scalars fgγg are efficiently computable
functions of the hydrogen-hydrogen bond length R.
The ground-state energy of Eq. (1) as a function of R

defines an energy surface. Such energy surfaces are used to
compute chemical reaction rates which are exponentially
sensitive to changes in energy. If accurate energy surfaces
are obtained, one can use established methods such as
classical Monte Carlo or molecular dynamics simulations
to obtain accurate free energies, which provide the rates
directly via the Erying equation [43]. At room temperature,
a relative error in energy of 1.6 × 10−3 hartree (1 kcal/mol
or 0.043 eV) translates to a chemical rate that differs
from the true value by an order of magnitude; therefore,
1.6 × 10−3 hartree is known as “chemical accuracy” [43].
Our goal, then, is to compute the lowest energy eigen-
values of Eq. (1) as a function of R, to within chemical
accuracy.

II. VARIATIONAL QUANTUM EIGENSOLVER

Many popular classical approximation methods for
the electronic structure problem involve optimizing a
parametrized guess wave function (known as an “ansatz”)
according to the variational principle [43]. If we para-
metrize an ansatz jφð~θÞi by the vector ~θ, then the variational
principle holds that

hφð~θÞjHjφð~θÞi
hφð~θÞjφð~θÞi

≥ E0; ð2Þ

where E0 is the smallest eigenvalue of the Hamiltonian H.
Accordingly, E0 can be estimated by selecting the param-
eters ~θ that minimize the left-hand side of Eq. (2).

While the ground-state wave function is likely to be in
superposition over an exponential number of states in the
basis of molecular orbitals, most classical approaches
restrict the ansatz to the support of polynomially many
basis elements due to memory limitations. However,
quantum circuits can prepare entangled states, which are
not known to be efficiently representable classically. In
VQE, the state jφð~θÞi is parametrized by the action of a
quantum circuit Uð~θÞ on an initial state jϕi; i.e.,

P. J. J. O’MALLEY et al. PHYS. REV. X 6, 031007 (2016)
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jφð~θÞi≡Uð~θÞjϕi. Even if jϕi is a simple product state and
Uð~θÞ is a very shallow circuit, jφð~θÞi can contain complex
many-body correlations and span an exponential number of
standard basis states.
We can express the mapping Uð~θÞ as a concatenation

of parametrized quantum gates, U1ðθ1ÞU2ðθ2Þ…UnðθnÞ.
In this work, we parametrize our circuit according to
unitary coupled cluster theory [20,22,23]. As described
in Appendix D, unitary coupled cluster theory predicts that
the ground state of Eq. (1) can be expressed as

jφðθÞi ¼ e−iθX0Y1 j01i; ð3Þ

where jϕi ¼ j01i is the Hartree-Fock (mean-field) state
of molecular hydrogen in the representation of Eq. (1).
As discussed in Appendix D, unitary coupled cluster
theory is widely believed to be classically intractable and
is known to be strictly more powerful than the “gold
standard” of classical electronic structure theory, coupled
cluster theory [43–46]. The gate model circuit that
performs this unitary mapping is shown in the software
section of Fig. 1.
VQE solves for the parameter vector ~θ with a classical

optimization routine. One first prepares an initial ansatz
jφð~θ0Þi and then estimates the ansatz energy Eð~θ0Þ by
measuring the expectation values of each term in Eq. (1)
and summing these values together as

Eð~θÞ ¼
X

γ

gγhφð~θÞjHγjφð~θÞi; ð4Þ

where the gγ are scalars and the Hγ are local Hamiltonians

as in Eq. (1). The initial guess ~θ0 and the corresponding
objective value Eð~θ0Þ are then fed to a classical greedy
minimization routine (e.g., gradient descent), which then
suggests a new setting of the parameters ~θ1. The energy
Eð~θ1Þ is then measured and returned to the classical outer
loop. This continues for m iterations until the energy
converges to a minimum value Eð~θmÞ, which represents
the VQE approximation to E0.
Because our experiment requires only a single varia-

tional parameter, as in Eq. (3), we elect to scan 1000
different values of θ ∈ ½−π; πÞ in order to obtain expect-
ation values that define the entire potential energy curve.
We do this to simplify the classical feedback routine but at
the cost of needing slightly more experimental trials. These
expectation values are shown in Fig. 2(a) and the corre-
sponding energy surfaces at different bond lengths are
shown in Fig. 2(b). The energy surface in Fig. 2(b) is
locally optimized at each bond length to emulate an on-the-
fly implementation.
Figure 3(a) shows the exact and experimentally deter-

mined energies of molecular hydrogen at different bond
lengths. The minimum energy bond length (R ¼ 0.72 Å)
corresponds to the equilibrium bond length, whereas the
asymptote on the right-hand part of the curve corresponds
to dissociation into two hydrogen atoms. The energy
difference between these points is the dissociation energy,
and the exponential of this quantity determines the chemi-
cal dissociation rate. Our VQE experiment correctly pre-
dicts this quantity with an error of ð8% 5Þ × 10−4 hartree,
which is below the chemical accuracy threshold. Error bars

FIG. 1. Hardware and software schematic of the variational quantum eigensolver. (Hardware) micrograph shows two Xmon transmon
qubits and microwave pulse sequences to perform single-qubit rotations (thick lines), dc pulses for two-qubit entangling gates (dashed
lines), and microwave spectroscopy tones for qubit measurements (thin lines). (Software) quantum circuit diagram shows preparation of
the Hartree-Fock state, followed by application of the unitary coupled cluster ansatz in Eq. (3) and efficient partial tomography (Rt) to
measure the expectation values in Eq. (1). Finally, the total energy is computed according to Eq. (4) and provided to a classical optimizer
which suggests new parameters.
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frequency-tuning squid by a single JJ. This is also an important 
design for arrays of 3D transmon qubits where direct access 
for tuning individual qubits may be dif!cult or impossible.

The generic approach for coupling non-linear oscillators 
is to use electromagnetic driving !elds to induce parametric 
coupling with tunable strength by creating a spectrum of side-
bands bridging frequency gaps. In this way it is possible to 
entangle superconducting qubits with different frequencies 
using (i) !xed linear couplings, (ii) only microwave con-
trol signals, and (iii) tunable effective interaction strengths. 
Recently these methods have been applied experimentally 
through a variety of schemes based on two different princi-
ples: (i) driving qubits, and (ii) driving coupling resonators, 
e.g. a tunable bus.

6.5.1. Driving qubits.

Cross resonance (CR) 2q gates.  The CR scheme [255–
259] exploits already present nonlinearities to achieve tunable 
coupling, circumventing the need for nonlinear coupling ele-
ments. The CR two-qubit gate scheme irradiates one of the 
qubits at the transition frequency of the other qubit. In the 
presence of this cross-resonant microwave drive, an effec-
tive coupling emerges between the two qubits whose strength 
increases linearly with the ratio (drive amplitude)/(difference 
frequency).

The CR-coupling of two qubits, Q1 and Q2, can be under-
stood in the dressed state picture of quantum optics [255, 
256]. Under CR driving, the central transition at the irradia-
tion frequency of the driven dressed Q1 system is matched to 
the bare transition of the undriven Q2. One thus creates a reso-
nance between the central feature of the Mollow triplet on Q1 
and the bare transition of Q2. The tunability of the effective 
coupling strength G results from the evolution of the dressed 
Q1 eigenstates as the !eld amplitude F is adjusted [255, 256]:

Ĥeff = g(F) σz1 σx2, (53)

which is related to the CNOT gate by one additional local π/2 
rotation of each qubit.

In addition to the CR scheme, one approach is to create 
a microwave-activated conditional-phase gate (MAP) [260] 
based on driving the |03〉 and |12〉 transmon states into reso-
nance. A general problem with driving qubits is that the cou-
plings may depend sensitively on the qubit level structure. For 
transmon qubits the CR scheme is limited by the weak anhar-
monicity of the transmon, and the MAP scheme employs 
speci!c higher excited states of the transmon. These schemes 
may therefore be challenging to scale up to many qubits.

6.5.2. Driving a tunable bus. Attaching a SQUID to the end 
of a coplanar wave-guide resonator (CPW) makes it possible 
to vary the boundary condition (effective length) and cre-
ate a "ux-tunable resonator [261, 262] and to couple qubits 
[263, 264]. In [263], !xed-frequency qubits with different fre-
quencies were coupled by successively bringing each qubit 
quasi-statically in and out of resonance with the tunable CPW, 
effectively creating multi-qubit gates. In [261, 264], the CPW 
was rapidly tuned (chirped) to create interference and beating 
of microwave emission, which in principle could dynamically 
couple qubits [264]. Alternatively, one can drive the resonator 
at high frequency to create sideband structure and dynamic 
parametric coupling between qubits. This is presently at the 
focus of extensive and promising research [141, 221, 265–
267], potentially providing multi-qubit gate architectures for 
scaled-up systems. A recent proposal is based on the Dynami-
cal Casimir Effect [267]: A SQUID is then connected to the 
midpoint of a CPW resonator that is connected to transmon 
qubits at both ends, varying the coupling between the two 
halves by "ux tuning. Driving the SQUID at microwave fre-
quencies emits pair of photons that can entangle the qubits 
[267].

Resonator-induced phase gate (RIP). In the resonator-
induced phase gate (RIP) scheme [141, 221, 265] !xed-
frequency transmons are statically coupled to the same bus 
resonator driven at the difference frequency of two qubits.

In a two 2D-transmon setup [221], parametrically oscillat-
ing a "ux-tunable ‘bus qubit’ (similar to a combination of the 

Figure 13. Circuits for implementation of (a) CPHASE; (b) CNOT; (c) Ctrl-Z(θ), θ arbitrary; (d) basic circuit for phase estimation using an 
ancilla (top qubit); (e) the U = exp[−i θ2σz ⊗ σz] operator; (f) a controlled version of (e) for controlled time evolution and phase estimation 
(top qubit).
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with expectation value:

〈Ĥ〉 =
∑

iα

hiα〈σiα〉+
∑

iα,jβ

hiα,jβ〈σiασjβ〉+ .... (111)

The coef!cients are determined using a classical quantum 
chemistry package.

The expectation value of a tensor product 〈σiασjβσkγ .....〉 
of an arbitrary number of Pauli operators can be estimated 
by local measurement of each qubit [54], independent meas-
urements that can be performed in parallel. The advantage of 
this approach [456] is then that the coherence time to make 
a single measurement after preparing the state is O(1). The 
disadvantage relative to the PEA is that the scaling in the total 
number of operations as a function of the desired precision 
is quadratically worse [456]. The scaling will also re"ect the 
number of state preparation repetitions required, whereas in 
PEA the number of state preparation steps is constant.

In the end, however, the QEE dramatically reduces the 
coherence time requirement, while maintaining an exponen-
tial advantage over the classical case by adding only a polyno-
mial number of repetitions with respect to QPE [456].

10.1.2. Quantum variational eigensolver. The quantum vari-
ational eigensolver (QVE) [456] is based on the Ritz varia-
tional principle, !nding the minimum of the expectation value 
of the Hamiltonian under variation of the trial state function: 
(i) prepare the trial state |ψ〉; (ii) compute the Rayleigh–Ritz 
quotient 〈Hi〉 = 〈ψ|Ĥi|ψ〉/〈ψ||ψ〉 of all the terms in the Ham-
iltonian using the QEE as a subroutine; (iii) calculate 

∑
i 〈Hi〉; 

(iv) compare the resulting energy with the previous runs and 
feed back new parameters for the trial state. Note that the only 
step that is quantum is step (iii)—the other steps are prepared 
using a classical computer.

The issue now concerns state preparation. One example 
of a quantum state parameterised by a polynomial number 
of parameters for which there is no known ef!cient classical 
implementation is the unitary coupled cluster ansatz (UCC) 
[394, 456]

|ψ〉 = eT−T†
|ψref〉 (112)

where |ψref〉 is some reference state, usually the Hartree Fock 
ground state, and T is the cluster operator for an N electron 
system, de!ned by operators

T = T1 + T2 + T3 + .... + TN (113)

producing 1, 2, 3, ...., N  electron-hole pairs from the N-electron 
reference state. Explicity for T1 and T2:

T1 =
∑

pq

tpqc+p cq (114)

T2 =
∑

pqrs

tpqrsc+p c+q crcs (115)

The series in equations (114) and (115) generate in principle 
all possible con!gurations for FCI, producing all possible 
ground and excited state correlations.

In real molecules, often a limited number of these correla-
tions produce the bulk of the interaction energy due to the 

Coulomb repulsion. The problem is that to achieve the acc-
uracy needed for describing realistic molecular chemical 
energy surfaces and accurately predicting chemical reaction 
paths, a large number of small correlations are needed to build 
up to the !nal accurate result. This is QMA-hard, i.e. intrac-
table for both classical and quantum computers. It therefore 
becomes a question of useful approximations. Again, note 
here the recent work by Carleo and Troyer [363].

In the case of the two-electron H2 and He–H+ molecules, 
N = 2. The cluster operators are then limited to T1 and T2 in 
equation (112) and it is possible to apply the full machinery 
with suitable approximations and to obtain chemical accuracy.

10.1.3. H–H ground-state energy curve. We will now describe 
an experimental application of the QVE to the problem of the 
ground-state energy curve of the hydrogen molecule [38].

For a 2-electron system, the Hamiltonian reduces to

Ĥ =
∑

iα

hiα(R) σiα +
∑

iα,jβ

hiα,jβ(R) σiασjβ (116)

or equivalently

Ĥ = g01+ g1Z0 + g2Z1 + g3Z0Z1 + g4X0X1 + g5Y0Y1 (117)

where the set of parameters gi = gi(R) depends on the H–H 
distance and is obtained from the expectation values of the 
Hamiltonian terms evaluated on a classical computer using 
the basis (reference) states.

We discussed quantum state preparation in general in sec-
tion 9, and the coupled-cluster approach above. In the QVE, 
the state |ψ(θ)〉 is parameterised by the action of a quantum 
circuit Û(θ) on an initial state |ψref〉, i.e. |ψ(θ)〉 = Û(θ)|ψref〉. 
Even if |ψ(θ)〉 is a simple product state and Û(θ) is a very 
shallow circuit, |ψref〉 can contain complex many-body cor-
relations and span an exponential number of standard basis 
states.

The unitary coupled cluster approach states that the ground 
state of equation (112) can be expressed as

|ψ(θ)〉 = Û(θ)|ψHF〉 = e−iθX0Y1 |01〉 (118)

where |01〉 is the Hartree–Fock (mean-!eld) state of molecu-
lar hydrogen in the representation of equation (112). The gate 
model circuit that performs this unitary mapping is shown in 
the software section of !gure 29.

The total bonding energy curve in !gure 30 demonstrates 
chemical accuracy (better than 10−3 hartree), which is a very 
important result. In contrast, the calculation using the full 
canonical protocol of trotterisation plus quantum phase esti-
mation (PEA) turns out much less accurate, amply demon-
strating that the fully quantum approach is very demanding on 
coherence time.

10.1.4. He-H+ ground-state energy curve. The QVE was 
originally applied to the helium-hydride cation He–H+ prob-
lem on a 2-qubit photonic processor by Peruzzo et al [456] . 
Recently, Wang et al [473] applied the IPEA to the He–H+ 
problem using a solid-state quantum register realised in a 
nitrogen-vacancy centre (NVC) in diamond, reporting an 
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stochastic calculus concerns generalisation of the Langevin 
equation to quantum systems. Because of the relation to stochas-
tic processes one has adopted the term ‘stoquastic’ to refer to 
quantum Hamiltonians where all off-diagonal matrix elements 
in the standard basis are real and non-positive [401]. Stoquastic 
Hamiltonians are very common in physics. Among spin-1/2 
models, the well-studied ferromagnetic Heisenberg models and 
the quantum transverse Ising model [79] are stoquastic. Another 
example is a Heisenberg antiferromagnet on a cubic lattice.

Barends et  al chose to investigate a stoquastic frustrated 
Ising Hamiltonian having random local X and Z "elds, and 
random zz couplings. Non-stoquastic problems have addi-
tional random xx couplings. The results show that the system 
can "nd the ground states of both stoquastic and non-stoquas-
tic Hamiltonians with comparable performance.

9.6. Digital quantum simulation of fermionic models

Computational physics, chemistry and materials science deal 
with the structure and dynamics of electronic systems: atoms, 
molecules, solids, liquids, soft matter, etc. To describe these 
systems one needs the full machinery of quantum many-body 
theory involving fermionic and bosonic particles and exci-
tations. So far a we have been working with 2-level (spin) 
systems coupled to bosonic modes. However, to describe 
electronic systems, the fermionic anti-commutation rules have 
to be built in. One way to do this was invented a long time 
ago in the form of the Jordan–Wigner (JW) transformation 

[402]. One then works in the occupation-number representa-
tion and keeps track of parity under permutations via the the 
anti- commutation rules of a set of auxiliary Pauli σ operators 
embedded in the fermionic creation and annihilation opera-
tors. In this way the number of σ operators scales as O(n), i.e. 
as the number of qubits.

Bravyi and Kitaev [403] derived an alternative (BK) trans-
formation, using the qubits for storing parities rather than 
occupation numbers. This scheme also maps the fermionic 
operators on products of Pauli σ operators. One advantage, 
however, is that the number of σ operators scales as O(logn), 
which will be important for simulation of large systems that 
require large numbers of qubits.

These methods have been developed theoretically and 
simulated classically over the last 15 years [390, 404–409], 
but never explored experimentally, until now. The "rst exper-
imental applications ever, with superconducting circuits, 
have recently been published, implementing digital simula-
tion of the Fermi–Hubbard model [36] and the ground state 
binding curve of the hydrogen molecule, H2 [38] (see further 
section 10.1.4).

For illustration of the approach to an elementary fermonic 
many-body system, consider a closed-shell atom or molecule. 
The general second-quantised Hamiltonian is given by:

Ĥ =
∑

pq

hpqc+p cq +
1
2

∑

pqrs

hpqrsc+p c+q crcs

 
(96)

where the "rst term describes the single-particle kinetic and 
potential energies, and the second term the 2-body Coulomb 
interaction. The indices refer to the set of basis orbitals (fermi-
onic modes) used to expand the Hamiltonian.

The simplest possible case is the ground state of a 2-elec-
tron system with a minimal basis of 2 states: a He atom with 
1s ↑ 1s ↓, or a H2 molecule with 1σ ↑ 1σ ↓. The Hartree 
Hamiltonian is then given by:

Ĥ = h1c+1 c1 + h2c+2 c2 + V12c+1 c1c+2 c2 (97)

Figure 26. (a) Two-spin XY model: Circuit diagram implementing the ÛXY(t) gate for a certain time t = τ . (b) Two-spin Heisenberg 
(XYZ) model: Circuit diagram implementing the ÛXYZ(t) gate (equation (90)) for a certain time t = τ . (c) Time evolution ÛXY(t) of the 
two-spin XY model: Experimentally determined coordinates of the Bloch vectors. Red (Q1) and blue (Q2) points are compared to the ideal 
paths shown as dashed lines in the XY model. (d) describes the same thing for the Heisenberg (XYZ) model. Reproduced from [192].  
CC BY 3.0.

Figure 27. Protocol to decompose and simulate Ising XY spin 
dynamics in a homogeneous transverse magnetic "eld. Reproduced 
from [192]. CC BY 3.0.
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with expectation value:

〈Ĥ〉 =
∑

iα

hiα〈σiα〉+
∑

iα,jβ

hiα,jβ〈σiασjβ〉+ .... (111)

The coef!cients are determined using a classical quantum 
chemistry package.

The expectation value of a tensor product 〈σiασjβσkγ .....〉 
of an arbitrary number of Pauli operators can be estimated 
by local measurement of each qubit [54], independent meas-
urements that can be performed in parallel. The advantage of 
this approach [456] is then that the coherence time to make 
a single measurement after preparing the state is O(1). The 
disadvantage relative to the PEA is that the scaling in the total 
number of operations as a function of the desired precision 
is quadratically worse [456]. The scaling will also re"ect the 
number of state preparation repetitions required, whereas in 
PEA the number of state preparation steps is constant.

In the end, however, the QEE dramatically reduces the 
coherence time requirement, while maintaining an exponen-
tial advantage over the classical case by adding only a polyno-
mial number of repetitions with respect to QPE [456].

10.1.2. Quantum variational eigensolver. The quantum vari-
ational eigensolver (QVE) [456] is based on the Ritz varia-
tional principle, !nding the minimum of the expectation value 
of the Hamiltonian under variation of the trial state function: 
(i) prepare the trial state |ψ〉; (ii) compute the Rayleigh–Ritz 
quotient 〈Hi〉 = 〈ψ|Ĥi|ψ〉/〈ψ||ψ〉 of all the terms in the Ham-
iltonian using the QEE as a subroutine; (iii) calculate 

∑
i 〈Hi〉; 

(iv) compare the resulting energy with the previous runs and 
feed back new parameters for the trial state. Note that the only 
step that is quantum is step (iii)—the other steps are prepared 
using a classical computer.

The issue now concerns state preparation. One example 
of a quantum state parameterised by a polynomial number 
of parameters for which there is no known ef!cient classical 
implementation is the unitary coupled cluster ansatz (UCC) 
[394, 456]

|ψ〉 = eT−T†
|ψref〉 (112)

where |ψref〉 is some reference state, usually the Hartree Fock 
ground state, and T is the cluster operator for an N electron 
system, de!ned by operators

T = T1 + T2 + T3 + .... + TN (113)

producing 1, 2, 3, ...., N  electron-hole pairs from the N-electron 
reference state. Explicity for T1 and T2:

T1 =
∑

pq

tpqc+p cq (114)

T2 =
∑

pqrs

tpqrsc+p c+q crcs (115)

The series in equations (114) and (115) generate in principle 
all possible con!gurations for FCI, producing all possible 
ground and excited state correlations.

In real molecules, often a limited number of these correla-
tions produce the bulk of the interaction energy due to the 

Coulomb repulsion. The problem is that to achieve the acc-
uracy needed for describing realistic molecular chemical 
energy surfaces and accurately predicting chemical reaction 
paths, a large number of small correlations are needed to build 
up to the !nal accurate result. This is QMA-hard, i.e. intrac-
table for both classical and quantum computers. It therefore 
becomes a question of useful approximations. Again, note 
here the recent work by Carleo and Troyer [363].

In the case of the two-electron H2 and He–H+ molecules, 
N = 2. The cluster operators are then limited to T1 and T2 in 
equation (112) and it is possible to apply the full machinery 
with suitable approximations and to obtain chemical accuracy.

10.1.3. H–H ground-state energy curve. We will now describe 
an experimental application of the QVE to the problem of the 
ground-state energy curve of the hydrogen molecule [38].

For a 2-electron system, the Hamiltonian reduces to

Ĥ =
∑

iα

hiα(R) σiα +
∑

iα,jβ

hiα,jβ(R) σiασjβ (116)

or equivalently

Ĥ = g01+ g1Z0 + g2Z1 + g3Z0Z1 + g4X0X1 + g5Y0Y1 (117)

where the set of parameters gi = gi(R) depends on the H–H 
distance and is obtained from the expectation values of the 
Hamiltonian terms evaluated on a classical computer using 
the basis (reference) states.

We discussed quantum state preparation in general in sec-
tion 9, and the coupled-cluster approach above. In the QVE, 
the state |ψ(θ)〉 is parameterised by the action of a quantum 
circuit Û(θ) on an initial state |ψref〉, i.e. |ψ(θ)〉 = Û(θ)|ψref〉. 
Even if |ψ(θ)〉 is a simple product state and Û(θ) is a very 
shallow circuit, |ψref〉 can contain complex many-body cor-
relations and span an exponential number of standard basis 
states.

The unitary coupled cluster approach states that the ground 
state of equation (112) can be expressed as

|ψ(θ)〉 = Û(θ)|ψHF〉 = e−iθX0Y1 |01〉 (118)

where |01〉 is the Hartree–Fock (mean-!eld) state of molecu-
lar hydrogen in the representation of equation (112). The gate 
model circuit that performs this unitary mapping is shown in 
the software section of !gure 29.

The total bonding energy curve in !gure 30 demonstrates 
chemical accuracy (better than 10−3 hartree), which is a very 
important result. In contrast, the calculation using the full 
canonical protocol of trotterisation plus quantum phase esti-
mation (PEA) turns out much less accurate, amply demon-
strating that the fully quantum approach is very demanding on 
coherence time.

10.1.4. He-H+ ground-state energy curve. The QVE was 
originally applied to the helium-hydride cation He–H+ prob-
lem on a 2-qubit photonic processor by Peruzzo et al [456] . 
Recently, Wang et al [473] applied the IPEA to the He–H+ 
problem using a solid-state quantum register realised in a 
nitrogen-vacancy centre (NVC) in diamond, reporting an 
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What happens at Chalmers ….. ?
Wallenberg Centre for Quantum Technologies

WACQT, 2018-2029 MC2, Chalmers U of Tech, Sweden

Chalmers WACQT - mästare

MC2

4Anglo-Swedish Society, 26 February 2019 Göran Wendin

What about Europe ….. ??
EU Flagship project 2019-2021 (…2028)

10 groups – incl. Chalmers

Quantum processor with 50-100 
qubits in 3 (!!) years …. 

(Chalmers leading 2 Work Pckages)

http://www.opensuperq.eu

Cryostat
≈ 10 mK

Mission: to build a quantum processor 
with 100+ superconduc=ng (Transmon) qubits

OpenSuperQ à OpenSuperQPlus (EU Quantum Flagship)
Mission: to build a 100+q full-stack QC by 2025 (and 1000+ by 2029 ….)
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pre-exascale LUMI
EuroHPC JU

LUMI consortium partners:
Belgium: Belgian Science Policy Office
Czech Republic: VSB –Technical University of Ostrava, 
IT4Innovations National Supercomputing Center
Denmark: Universities Denmark
Estonia: Estonian Scientific Computing Infrastructure
Finland: CSC – IT Center for Science Ltd.
Iceland: University of Iceland
Norway: UNINETT Sigma2 AS
Poland: AGH University of Science and Technology, 
Academic Computer Centre Cyfronet AGH
Sweden: Swedish Research Council, Vetenskapsrådet
Switzerland: ETH Zürich

What happens in super HPC ….. ??

http://www.belspo.be/
https://www.it4i.cz/
https://dkuni.dk/
https://etais.ee/
https://www.csc.fi/
https://english.hi.is/university_of_iceland
https://www.sigma2.no/
http://www.cyfronet.krakow.pl/en/4421,main.html
https://www.vr.se/
https://ethz.ch/de.html
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What happens in super HPC-QC …. ???

EuroHPC JU
proposal 

autumn 2020
“almost succeded”

QC
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Depiction of the LUMI-Q concept, where several 
different quantum computing solutions are integrated 

with the LUMI supercomputing ecosystem.

The LUMI-Q concept
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The NordiQuEst result !!
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NordIQuEst

Start 1 Feb 2022, 3 years
Göran Wendin Project Manager
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NordIQuEst
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NordIQuEst

The NordIQuEst Mission
• NordIQuEst will deliver user and computer interfaces, quantum program libraries, 

training and education events and material, as well as user support. 

• Pooling of resources and collaboration for reaching critical mass, providing access to 

several Nordic quantum computers  (QPU) and QC simulators (SW+HPC)

• Chalmers and VTT will connect their current QCs to the NordIQuEst Rest API

• CSC will connect LUMI and the Atos QLM quantum simulator to the NordIQuEst API

• By the end of this project, a sustainable functioning, truly multi-purpose Nordic 

quantum computing ecosystem will be established and ready to be further exploited
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NordiQuEst in a nutshell
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NordIQuEst
The difference between NordIQuEst and LUMI-Q

and the meaning of “connect”

NordIQuest
LUMI-Q

FQC
QAL 9000FQC



12NeIC All hands … , 22 January  2022 Göran Wendin

NordIQuEst

Berzelius

WP3

WP3 WP3

WP4 WP4 WP4

WP3
CHALMERS

WP3
VTT

WP4
CSC WP4

SRL

WP2

WP3 WP3

WP3

WP4
SRL

WP2: Library of use cases: 
QAOA, VQE, …..

WP3 WP3
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NordIQuEst
MD1.1 Presentation material on the opportunities of and for quantum computing prepared 
MD1.2 First report on the user-base 
MD1.3 Final report on the user-base, including progress and change report
MD2.1 Installation of quantum programming frameworks 
MD2.2 Sample QAOA application library 
MD2.3 Problem library with rules
MD2.4 Testing and debugging framework
MD3.1 The NordIQuEst API defined, access vetted through Puhuri
MD3.2 Real quantum computers connected
MD3.3 Adaptive layers for Qiskit and Cirq created
MD4.1 Kvasi, the Atos Quantum Learning Machine connected
MD4.2 Large and accelerated simulators connected
MD4.3 Pool of smaller on-demand simulators, suitable for education connected
MD5.1 NordIQuEst home page
MD5.2 FAQ section
MD5.3 User guides
MD5.4 Training and presentation material
MD5.5 Blog posts and other topical issues
MD6.1 Detailed plan on training and education
MD6.2 Training events and course material for various target groups
MD6.3 Guest lectures
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NordiQuEst KPIs …. for the Project Manager ….
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à We need QC for exponential speed-up
to solve (approximately!) hard problems with finite resources (time, memory).
(to reduce energy consumption, if nothing else ...)

The original “killer application”: Shor’s algorithm for factorisation (1995)

Today, the typical killer applications are  “use cases”:

• Quantum Chemistry – designing enzymes and catalysers

• Materials science – describing strong electron correlations

• Optimization - logistics, scheduling, ...

Why do we need NordIQuEst ?
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Quantum computers offer, in principle, 
exponenVal speed-up for certain classes of hard problems

TTS (time-to-solution) 
for a HPC:
Grows exponentially
TTS for a quantum 
computer: 
Grows 
linearly/polynomiallyproblem size

,me

Quantum Advantage

No Quantum Advantage
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Complexity class landscape

Shor’s algorithm
factorisaVon

OpVmisaVon
Searching
TSP
LogisVcs
Scheduling

Quantum 
Chemistry

HPC

Quantum Advantage ?
Quantum Superiority ??

Quantum 
Advantage ! 
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will be specifically designed for this task by ZI. Building up on existing methods [Stenberg16, Chasseur15-17], 
USAAR will also refine techniques to characterize the system Hamiltonian, in particular residual cross-talk terms.  

Standardized sequences will be defined for pulse parameter calibration and benchmarking of the achieved fidelities. 
These will include (simultaneous) randomized benchmarking, gate set tomography and quantum process 
tomography, as well as specific error amplification sequences [Sheldon16] for calibration, or compressed sensing. 
The methods and the hardware infrastructure will be tested first on two-qubit devices and then extended to multi-
qubit settings of increasing complexity. At the end of the project we will have implemented automated calibration 
routines which achieve two-qubit gate fidelities above 99% in a 100+ qubit systems on the timescale of a few 
minutes by use of a parallelized control and readout system. To guarantee smooth exchange of pulses in functional, 
parametrized form and measured data (WP6) between the theory team at USAAR and experiments at IBMZ, 
ETHZ and CHALMERS, protocols and definitions for pulses and control schemes will be standardized.  

Modular control and measurement system with standardized interfaces. The collaborative nature of the project 
requires clear definitions and a modular approach for the control and measurement system such that hardware and 
software components can be developed by the partners and put together in all experimental labs and at the central 
site. The layers of the control stack in Fig. 8 show the essential modules, interfaces and data structures. A detailed 
definition of the individual elements and their standards will be developed in WP6. These interface definitions will 
serve as a standard for the consortium and will be promoted as standards for the larger community. 

In this context we plan to define the following interfaces: the Q-API provides the user with high-level 
programming environment, e.g. a web-based API or a software environment (python, jupyter notebooks, etc.). The 
Q-assembler interface contains the instruction set for abstract gates (e.g. H for a Hadamard gate, M for 
measurement). The Q-pulse LQWHUIDFH�FRPPXQLFDWHV�SDUDPHWHUL]HG�SXOVHV��H�J��µ*DXVVLDQ��DPSOLWXGH��ZLGWK�¶��DQG�
measurement data. Q-data defines the communication of measurement data, Q-components defines connectors, 
cables, bandwidth, mechanical supports between microwave components, and Q-launcher defines physical layout, 
impedance, materials, of signal carriers between package and on-chip circuits.  

This modular software and hardware structure will provide versatile functionality:  

1. Calibration and tune-up: A set of automated measurement routines will be used to fully characterize the 
system either via the Q-assembler or the Q-pulse interface. Open and closed control loops will communicate 
between Signal/Data analysis modules and the Q-SDK, Execution controller, or Signal generation module. 
These will be based on the benchmarking and calibration routines developed in WP1 and WP4.  

2. Operation at the experimental level: Experimentalists get access to all software, electronics and device 
levels. Experiments to extract device level information, such as photon number, cross-talk, etc. can be 
programmed either via the Q-API (e.g. jupyter notebook), Q-assembler (QASM script), Q-pulse (pulse 
sequence), or even at the Q-Components level using microwave test equipment such as a vector network 
analyzer to characterize response functions. Similarly, output signal data is accessible as analog signals (Q-
components), digitized waveforms (Q-pulse), binary values (Q-data) or expectation values (Q-API).    

3. User access: Provisions for running and testing algorithms without direct physical access to the system will be 
defined. Access at different levels will be defined. Basic users will have the possibility to run algorithms at the 
gate level, power users will have access at the pulse-level for optimal control and calibration. 

 

Figure 8. Structure of the control 
and measurement system 
comprising modules (blue boxes), 
interfaces (gray boxes), data 
containers for parameters and 
settings (darker blue squares: 
Up: user, Dp: device, Pp: pulse, 
Wp: waveform, Qp: quantum 
system parameters) and signal 
data containers (green boxes: 
P:pulses, W: waveforms, M: 
measurement outcomes, R: 
algorithmic results). The User 
provides input to the system in the 
form of algorithms and 
calibration sequences and 
obtains output in the form of 

measurement results, calibration and device parameters as well as system information for debugging. The user will be able 
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The HPC necessarily RUNS the QC
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The series of terms generates in principle all possible configurations for FCI, producing all possible 
ground and excited state correlations. The terms shown generate single (S) and double (D) excitations 
and gives the parametrised UCCSD trial-state approximation that we are using. The coefficients tpq and 
tpqrs are variational parameters determining the weight of the excited configuration. 
 
The UCCSD trial-state with fermionic operators must now be mapped onto qubit spin operators. 
Common transformations are Jordan-Wigner (JW), Bravyi-Kitaev (BK) and Parity, all designed to 
impose the anticommutation rules. The original UCCSD exponential is then expanded into exponentials 
of large numbers of products of Paul pin-operators acting on qubits. The parametrised initial trial state 
is then constructed through entangled quantum circuits: combinations of parametrised 1q-rotation 
gates and entangling CNOT gates. The size of the quantum circuit can finally be reduced by qubit 
reduction schemes and qubit tapering [7]. All this results in a state vector for the trial state. 
 
The fermionic operators in the Hamiltonian must also be expanded in products of Pauli spin-operators. 
The expectation value can then be calculated in two ways: (1) State-vector approach: direct calculation 
of <∑Hi> by matrix operations (QISKit state-vector backend); (2) Measurement approach: generating 
an ensemble of identical trial states and measuring the Pauli operators of the Hamiltonian terms Hi 
(Fig.1) (QISKit qasm HPC backend; or experimental q-HW backends).   
 

       
(a)             (b) 

Figure 1: The Variational Quantum Eigensolver (VQE) (1(a) [8]; 1(b) [Aspuru-Guzik et al.]). Figure 1(b) emphasises 
that there are two loops for updating the variational parameters: (i) an “internal” loop that optimises the 
variational (UCCSD) ansatz, and (ii) an “external” loop that minimises the energy. 
 
The QISKit gate lists involve the general parametrised Pauli operators for 1q-operations plus CNOT 
(controlled-X, cx), forming a universal set of quantum gate operations (see the Appendix).  
 
We illustrate the VQE in some detail by showing how it works for the 2-electron hydrogen molecule. 
The fermionic operators in the Hamiltonian  
 

 
are transformed into products of Pauli operators that can operate on qubits while conserving the 
anticommutation rules  
 

 
or explicitly (renaming the Pauli operators):  
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|cS that minimizes

hc j H j ci
hc j ci : ð3Þ

By varying the experimental parameters in the preparation of
|cS and computing the Rayleigh–Ritz quotient using QEE as
a subroutine in a classical minimization, one may prepare
unknown eigenvectors. At the termination of the algorithm, a
simple prescription for the reconstruction of the eigenvector is
stored in the final set of experimental parameters that define |cS.

If a quantum state is characterized by an exponentially large
number of parameters, it cannot be prepared with a polynomial
number of operations. The set of efficiently preparable states are
therefore characterized by polynomially many parameters, and
we choose a particular set of ansatz states of this type. Under
these conditions, a classical search algorithm on the experimental
parameters that define |cS needs only explore a polynomial
number of dimensions—a requirement for the search to be
efficient. One example of a quantum state parameterized by a
polynomial number of parameters for which there is no known
efficient classical implementation is the unitary coupled cluster
ansatz29

j Ci ¼ eT $Tw j Firef : ð4Þ

where |FSref is some reference state, usually the Hartree Fock
ground state, and T is the cluster operator for an N electron
system, defined by

T ¼ T1þT2þT3þ :::þTN ; ð5Þ

where

T1 ¼
X

pr

tr
pâwpâr ð6Þ

T2 ¼
X

pqrs

trs
pqâwpâwqârâs ð7Þ

and higher-order terms follow logically. It is clear that by
construction the operator (T$Tw) is anti-hermitian,
and exponentiation maps it to a unitary operator U ¼ eðT $TT Þ.
For any fixed excitation level k, the reduced cluster operator is

written as

TðkÞ ¼
Xk

i¼1

Ti: ð8Þ

In general no efficient implementation of this ansatz has yet been
developed for a classical computer, even for low-order cluster
operators, due to the non-truncation of the BCH series29.
However, this state may be prepared efficiently on a quantum
device. The reduced anti-hermitian cluster operator (T(k)$T(k)w)
is the sum of a polynomial number of terms—namely, it contains
a number of terms O(Nk(M$N)k), where M is the number of
single-particle orbitals. By defining an effective Hermitian
Hamiltonian H¼ i(T(k)$T(k)w) and performing the Jordan–
Wigner transformation to reach a Hamiltonian that acts on the
space of qubits, ~H, we are left with a Hamiltonian that is a sum of
polynomially many products of Pauli operators. The problem
then reduces to the quantum simulation of this effective
Hamiltonian, ~H, which can be done in polynomial time using
the procedure outlined by Ortiz et al.23 We note that while this
state preparation procedure utilizes tools from quantum
simulation, the total effective time of evolution is fixed by the
expansion coefficients trs

pq. This is in contrast to the normal
difficulties encountered in QPE, where simulations must be
carried out for times that are exponential in the desired bits of
precision.

While there is currently no known efficient classical algorithm
based on these ansatz states, non-unitary coupled cluster ansatz is
sometimes referred to as the ‘gold standard of quantum
chemistry’ as it is the standard of accuracy to which other
methods in quantum chemistry are often compared. The unitary
version of this ansatz is thought to yield superior results to even
this ‘gold standard’29.

Prototype demonstration. We have implemented the QPU using
integrated quantum photonics technology30. Our device, shown
schematically in Fig. 2, is a reconfigurable waveguide chip that
can prepare and measure arbitrary two-bit pure states using
several single-qubit rotations and one two-qubit entangling gate.
The state is path-encoded using photon pairs generated via a
spontaneous parametric downconversion process. State

QPU
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Figure 1 | Architecture of the quantum-variational eigensolver. In QEE, quantum states that have been previously prepared are fed into the quantum
modules, which compute /HiS, where Hi is any given term in the sum defining H. The results are passed to the CPU, which computes /HS. In the
quantum variational eigensolver, the classical minimization algorithm, run on the CPU, takes /HS and determines the new state parameters, which are
then fed back to the QPU.
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Fig. 2 The Variational Quantum Eigensolver (VQE) implements the Rayleigh-Ritz variational principle. Gate 
operations on the QHW creates a quantum state in the QHW register, described in terms of a state vector. 
Repeated application of rotation (Pauli) operators and subsequent measurements (state tomography) produces 
a distribution of energies that that are used for calculating the expectation value of the Hamiltonian – the 
energy.  

 
Figure 3 exemplifies the VQE-method in the simple case of the H2 molecule [3]. 

 

 
 

Fig. 3. The VQE exemplified for H2 molecule. The fermionic operators in the Hamiltonian are transformed into 
products of Pauli operators that can operate on qubits while conserving the anticommutation rules (Jordan-

Wigner (JW); Bravyi-Kitaev (BK); Parity). The trial function |j(q)> is constructed through a sequence of 
parametrized 1q rotations and entangling 2q gates applied to a suitable initial reference state. The Unitary 
Coupled Cluster Singles and Doubles (UCCSD) approximation creates the trial function via double excitations 
from the Hartree-Fock (HF) mean-field reference state |01>, building-in electron pair-correlation effects. The 

UCCSD-generating quantum circuit is given by a CNOT, an Rz(q) rotation, and another CNOT. 
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Variational quantum eigensolver - VQE

Rayleigh-Ritz = VQE

from exponentially costly precompilation [33]. When
implemented using a unitary coupled cluster (UCC) ansatz,
VQE cannot be efficiently simulated classically, and
empirical evidence suggests that answers are accurate
enough to predict chemical rates [19–23]. Because VQE
only requires short state preparation and measurement
sequences, it has been suggested that classically intractable
computations might be possible using VQE without the
overhead of error correction [22,23]. Our experiments
substantiate this notion; the robustness of the VQE to
systematic device errors allows the experiment to achieve
chemical accuracy.
Our second experiment realizes the original algorithm

for the quantum simulation of chemistry, introduced in
Ref. [2]. This approach involves Trotterized simulation [34]
and the quantum phase estimation algorithm (PEA) [35].
We experimentally perform this entire algorithm, including
both key components, for the first time. While PEA has
asymptotically better scaling in terms of precision than
VQE, long and coherent gate sequences are required for its
accurate implementation.
The phase estimation component of the canonical

quantum chemistry algorithm has been demonstrated in
a photonic system [36], a nuclear magnetic resonance
system [37], and a nitrogen-vacancy center system [38].
While all three experiments obtained molecular energies to
incredibly high precision, none of the experiments imple-
mented the propagator in a scalable fashion (e.g., using
Trotterization), as doing so requires long coherent evolu-
tions. Furthermore, none of these experiments used more
than a single qubit or qutrit to represent the entire molecule.
This was possible due to the use of the configuration basis,
which is not scalable but renders the experimental chal-
lenge much easier. Furthermore, all of these implementa-
tions applied the logic gates with a single, totally controlled
pulse, as opposed to compiling the algorithm to a universal
set of gates as we do.
There have been two previous experimental demonstra-

tions of VQE, first in a photonic system [19] and later in an
ion trap [39]. Both experiments validated the variational
approach, and the latter implemented an ansatz based on
unitary coupled cluster. All prior experiments focused
on either molecular hydrogen [36,37] or helium hydride
[19,38,39], but none of these prior experiments employed a
scalable qubit representation such as second quantization.
Instead, all five prior experiments represent the Hamiltonian
in a configuration basis that cannot be efficiently decom-
posed as a sum of local Hamiltonians, and then exponentiate
this exponentially large matrix as a classical preprocessing
step [19,36–39].
Until this work, important aspects of scalable chemistry

simulation such as the Jordan-Wigner transformation [40]
or the Bravyi-Kitaev transformation [41,42] had never been
used to represent a molecule in an experiment; however,
prior experiments such as Ref. [7] have previously used the

Jordan-Wigner representation to simulate fermions on a
lattice. In both experiments presented here, we simulate the
dissociation of molecular hydrogen in the minimal basis
of Hartree-Fock orbitals, represented using the Bravyi-
Kitaev transformation of the second quantized molecular
Hamiltonian [17]. As shown in Appendix A, the molecular
hydrogen Hamiltonian can be scalably written as

H ¼ g01þ g1Z0 þ g2Z1 þ g3Z0Z1 þ g4Y0Y1 þ g5X0X1;

ð1Þ

where fXi; Zi; Yig denote Pauli matrices acting on the ith
qubit and the real scalars fgγg are efficiently computable
functions of the hydrogen-hydrogen bond length R.
The ground-state energy of Eq. (1) as a function of R

defines an energy surface. Such energy surfaces are used to
compute chemical reaction rates which are exponentially
sensitive to changes in energy. If accurate energy surfaces
are obtained, one can use established methods such as
classical Monte Carlo or molecular dynamics simulations
to obtain accurate free energies, which provide the rates
directly via the Erying equation [43]. At room temperature,
a relative error in energy of 1.6 × 10−3 hartree (1 kcal/mol
or 0.043 eV) translates to a chemical rate that differs
from the true value by an order of magnitude; therefore,
1.6 × 10−3 hartree is known as “chemical accuracy” [43].
Our goal, then, is to compute the lowest energy eigen-
values of Eq. (1) as a function of R, to within chemical
accuracy.

II. VARIATIONAL QUANTUM EIGENSOLVER

Many popular classical approximation methods for
the electronic structure problem involve optimizing a
parametrized guess wave function (known as an “ansatz”)
according to the variational principle [43]. If we para-
metrize an ansatz jφð~θÞi by the vector ~θ, then the variational
principle holds that

hφð~θÞjHjφð~θÞi
hφð~θÞjφð~θÞi

≥ E0; ð2Þ

where E0 is the smallest eigenvalue of the Hamiltonian H.
Accordingly, E0 can be estimated by selecting the param-
eters ~θ that minimize the left-hand side of Eq. (2).
While the ground-state wave function is likely to be in

superposition over an exponential number of states in the
basis of molecular orbitals, most classical approaches
restrict the ansatz to the support of polynomially many
basis elements due to memory limitations. However,
quantum circuits can prepare entangled states, which are
not known to be efficiently representable classically. In
VQE, the state jφð~θÞi is parametrized by the action of a
quantum circuit Uð~θÞ on an initial state jϕi; i.e.,

P. J. J. O’MALLEY et al. PHYS. REV. X 6, 031007 (2016)
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jφð~θÞi≡Uð~θÞjϕi. Even if jϕi is a simple product state and
Uð~θÞ is a very shallow circuit, jφð~θÞi can contain complex
many-body correlations and span an exponential number of
standard basis states.
We can express the mapping Uð~θÞ as a concatenation

of parametrized quantum gates, U1ðθ1ÞU2ðθ2Þ…UnðθnÞ.
In this work, we parametrize our circuit according to
unitary coupled cluster theory [20,22,23]. As described
in Appendix D, unitary coupled cluster theory predicts that
the ground state of Eq. (1) can be expressed as

jφðθÞi ¼ e−iθX0Y1 j01i; ð3Þ

where jϕi ¼ j01i is the Hartree-Fock (mean-field) state
of molecular hydrogen in the representation of Eq. (1).
As discussed in Appendix D, unitary coupled cluster
theory is widely believed to be classically intractable and
is known to be strictly more powerful than the “gold
standard” of classical electronic structure theory, coupled
cluster theory [43–46]. The gate model circuit that
performs this unitary mapping is shown in the software
section of Fig. 1.
VQE solves for the parameter vector ~θ with a classical

optimization routine. One first prepares an initial ansatz
jφð~θ0Þi and then estimates the ansatz energy Eð~θ0Þ by
measuring the expectation values of each term in Eq. (1)
and summing these values together as

Eð~θÞ ¼
X

γ

gγhφð~θÞjHγjφð~θÞi; ð4Þ

where the gγ are scalars and the Hγ are local Hamiltonians

as in Eq. (1). The initial guess ~θ0 and the corresponding
objective value Eð~θ0Þ are then fed to a classical greedy
minimization routine (e.g., gradient descent), which then
suggests a new setting of the parameters ~θ1. The energy
Eð~θ1Þ is then measured and returned to the classical outer
loop. This continues for m iterations until the energy
converges to a minimum value Eð~θmÞ, which represents
the VQE approximation to E0.

Because our experiment requires only a single varia-
tional parameter, as in Eq. (3), we elect to scan 1000
different values of θ ∈ ½−π; πÞ in order to obtain expect-
ation values that define the entire potential energy curve.
We do this to simplify the classical feedback routine but at
the cost of needing slightly more experimental trials. These
expectation values are shown in Fig. 2(a) and the corre-
sponding energy surfaces at different bond lengths are
shown in Fig. 2(b). The energy surface in Fig. 2(b) is
locally optimized at each bond length to emulate an on-the-
fly implementation.
Figure 3(a) shows the exact and experimentally deter-

mined energies of molecular hydrogen at different bond
lengths. The minimum energy bond length (R ¼ 0.72 Å)
corresponds to the equilibrium bond length, whereas the
asymptote on the right-hand part of the curve corresponds
to dissociation into two hydrogen atoms. The energy
difference between these points is the dissociation energy,
and the exponential of this quantity determines the chemi-
cal dissociation rate. Our VQE experiment correctly pre-
dicts this quantity with an error of ð8% 5Þ × 10−4 hartree,
which is below the chemical accuracy threshold. Error bars

FIG. 1. Hardware and software schematic of the variational quantum eigensolver. (Hardware) micrograph shows two Xmon transmon
qubits and microwave pulse sequences to perform single-qubit rotations (thick lines), dc pulses for two-qubit entangling gates (dashed
lines), and microwave spectroscopy tones for qubit measurements (thin lines). (Software) quantum circuit diagram shows preparation of
the Hartree-Fock state, followed by application of the unitary coupled cluster ansatz in Eq. (3) and efficient partial tomography (Rt) to
measure the expectation values in Eq. (1). Finally, the total energy is computed according to Eq. (4) and provided to a classical optimizer
which suggests new parameters.
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frequency-tuning squid by a single JJ. This is also an important 
design for arrays of 3D transmon qubits where direct access 
for tuning individual qubits may be dif!cult or impossible.

The generic approach for coupling non-linear oscillators 
is to use electromagnetic driving !elds to induce parametric 
coupling with tunable strength by creating a spectrum of side-
bands bridging frequency gaps. In this way it is possible to 
entangle superconducting qubits with different frequencies 
using (i) !xed linear couplings, (ii) only microwave con-
trol signals, and (iii) tunable effective interaction strengths. 
Recently these methods have been applied experimentally 
through a variety of schemes based on two different princi-
ples: (i) driving qubits, and (ii) driving coupling resonators, 
e.g. a tunable bus.

6.5.1. Driving qubits.

Cross resonance (CR) 2q gates.  The CR scheme [255–
259] exploits already present nonlinearities to achieve tunable 
coupling, circumventing the need for nonlinear coupling ele-
ments. The CR two-qubit gate scheme irradiates one of the 
qubits at the transition frequency of the other qubit. In the 
presence of this cross-resonant microwave drive, an effec-
tive coupling emerges between the two qubits whose strength 
increases linearly with the ratio (drive amplitude)/(difference 
frequency).

The CR-coupling of two qubits, Q1 and Q2, can be under-
stood in the dressed state picture of quantum optics [255, 
256]. Under CR driving, the central transition at the irradia-
tion frequency of the driven dressed Q1 system is matched to 
the bare transition of the undriven Q2. One thus creates a reso-
nance between the central feature of the Mollow triplet on Q1 
and the bare transition of Q2. The tunability of the effective 
coupling strength G results from the evolution of the dressed 
Q1 eigenstates as the !eld amplitude F is adjusted [255, 256]:

Ĥeff = g(F) σz1 σx2, (53)

which is related to the CNOT gate by one additional local π/2 
rotation of each qubit.

In addition to the CR scheme, one approach is to create 
a microwave-activated conditional-phase gate (MAP) [260] 
based on driving the |03〉 and |12〉 transmon states into reso-
nance. A general problem with driving qubits is that the cou-
plings may depend sensitively on the qubit level structure. For 
transmon qubits the CR scheme is limited by the weak anhar-
monicity of the transmon, and the MAP scheme employs 
speci!c higher excited states of the transmon. These schemes 
may therefore be challenging to scale up to many qubits.

6.5.2. Driving a tunable bus. Attaching a SQUID to the end 
of a coplanar wave-guide resonator (CPW) makes it possible 
to vary the boundary condition (effective length) and cre-
ate a "ux-tunable resonator [261, 262] and to couple qubits 
[263, 264]. In [263], !xed-frequency qubits with different fre-
quencies were coupled by successively bringing each qubit 
quasi-statically in and out of resonance with the tunable CPW, 
effectively creating multi-qubit gates. In [261, 264], the CPW 
was rapidly tuned (chirped) to create interference and beating 
of microwave emission, which in principle could dynamically 
couple qubits [264]. Alternatively, one can drive the resonator 
at high frequency to create sideband structure and dynamic 
parametric coupling between qubits. This is presently at the 
focus of extensive and promising research [141, 221, 265–
267], potentially providing multi-qubit gate architectures for 
scaled-up systems. A recent proposal is based on the Dynami-
cal Casimir Effect [267]: A SQUID is then connected to the 
midpoint of a CPW resonator that is connected to transmon 
qubits at both ends, varying the coupling between the two 
halves by "ux tuning. Driving the SQUID at microwave fre-
quencies emits pair of photons that can entangle the qubits 
[267].

Resonator-induced phase gate (RIP). In the resonator-
induced phase gate (RIP) scheme [141, 221, 265] !xed-
frequency transmons are statically coupled to the same bus 
resonator driven at the difference frequency of two qubits.

In a two 2D-transmon setup [221], parametrically oscillat-
ing a "ux-tunable ‘bus qubit’ (similar to a combination of the 

Figure 13. Circuits for implementation of (a) CPHASE; (b) CNOT; (c) Ctrl-Z(θ), θ arbitrary; (d) basic circuit for phase estimation using an 
ancilla (top qubit); (e) the U = exp[−i θ2σz ⊗ σz] operator; (f) a controlled version of (e) for controlled time evolution and phase estimation 
(top qubit).
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with expectation value:

〈Ĥ〉 =
∑

iα

hiα〈σiα〉+
∑

iα,jβ

hiα,jβ〈σiασjβ〉+ .... (111)

The coef!cients are determined using a classical quantum 
chemistry package.

The expectation value of a tensor product 〈σiασjβσkγ .....〉 
of an arbitrary number of Pauli operators can be estimated 
by local measurement of each qubit [54], independent meas-
urements that can be performed in parallel. The advantage of 
this approach [456] is then that the coherence time to make 
a single measurement after preparing the state is O(1). The 
disadvantage relative to the PEA is that the scaling in the total 
number of operations as a function of the desired precision 
is quadratically worse [456]. The scaling will also re"ect the 
number of state preparation repetitions required, whereas in 
PEA the number of state preparation steps is constant.

In the end, however, the QEE dramatically reduces the 
coherence time requirement, while maintaining an exponen-
tial advantage over the classical case by adding only a polyno-
mial number of repetitions with respect to QPE [456].

10.1.2. Quantum variational eigensolver. The quantum vari-
ational eigensolver (QVE) [456] is based on the Ritz varia-
tional principle, !nding the minimum of the expectation value 
of the Hamiltonian under variation of the trial state function: 
(i) prepare the trial state |ψ〉; (ii) compute the Rayleigh–Ritz 
quotient 〈Hi〉 = 〈ψ|Ĥi|ψ〉/〈ψ||ψ〉 of all the terms in the Ham-
iltonian using the QEE as a subroutine; (iii) calculate 

∑
i 〈Hi〉; 

(iv) compare the resulting energy with the previous runs and 
feed back new parameters for the trial state. Note that the only 
step that is quantum is step (iii)—the other steps are prepared 
using a classical computer.

The issue now concerns state preparation. One example 
of a quantum state parameterised by a polynomial number 
of parameters for which there is no known ef!cient classical 
implementation is the unitary coupled cluster ansatz (UCC) 
[394, 456]

|ψ〉 = eT−T†
|ψref〉 (112)

where |ψref〉 is some reference state, usually the Hartree Fock 
ground state, and T is the cluster operator for an N electron 
system, de!ned by operators

T = T1 + T2 + T3 + .... + TN (113)

producing 1, 2, 3, ...., N  electron-hole pairs from the N-electron 
reference state. Explicity for T1 and T2:

T1 =
∑

pq

tpqc+p cq (114)

T2 =
∑

pqrs

tpqrsc+p c+q crcs (115)

The series in equations (114) and (115) generate in principle 
all possible con!gurations for FCI, producing all possible 
ground and excited state correlations.

In real molecules, often a limited number of these correla-
tions produce the bulk of the interaction energy due to the 

Coulomb repulsion. The problem is that to achieve the acc-
uracy needed for describing realistic molecular chemical 
energy surfaces and accurately predicting chemical reaction 
paths, a large number of small correlations are needed to build 
up to the !nal accurate result. This is QMA-hard, i.e. intrac-
table for both classical and quantum computers. It therefore 
becomes a question of useful approximations. Again, note 
here the recent work by Carleo and Troyer [363].

In the case of the two-electron H2 and He–H+ molecules, 
N = 2. The cluster operators are then limited to T1 and T2 in 
equation (112) and it is possible to apply the full machinery 
with suitable approximations and to obtain chemical accuracy.

10.1.3. H–H ground-state energy curve. We will now describe 
an experimental application of the QVE to the problem of the 
ground-state energy curve of the hydrogen molecule [38].

For a 2-electron system, the Hamiltonian reduces to

Ĥ =
∑

iα

hiα(R) σiα +
∑

iα,jβ

hiα,jβ(R) σiασjβ (116)

or equivalently

Ĥ = g01+ g1Z0 + g2Z1 + g3Z0Z1 + g4X0X1 + g5Y0Y1 (117)

where the set of parameters gi = gi(R) depends on the H–H 
distance and is obtained from the expectation values of the 
Hamiltonian terms evaluated on a classical computer using 
the basis (reference) states.

We discussed quantum state preparation in general in sec-
tion 9, and the coupled-cluster approach above. In the QVE, 
the state |ψ(θ)〉 is parameterised by the action of a quantum 
circuit Û(θ) on an initial state |ψref〉, i.e. |ψ(θ)〉 = Û(θ)|ψref〉. 
Even if |ψ(θ)〉 is a simple product state and Û(θ) is a very 
shallow circuit, |ψref〉 can contain complex many-body cor-
relations and span an exponential number of standard basis 
states.

The unitary coupled cluster approach states that the ground 
state of equation (112) can be expressed as

|ψ(θ)〉 = Û(θ)|ψHF〉 = e−iθX0Y1 |01〉 (118)

where |01〉 is the Hartree–Fock (mean-!eld) state of molecu-
lar hydrogen in the representation of equation (112). The gate 
model circuit that performs this unitary mapping is shown in 
the software section of !gure 29.

The total bonding energy curve in !gure 30 demonstrates 
chemical accuracy (better than 10−3 hartree), which is a very 
important result. In contrast, the calculation using the full 
canonical protocol of trotterisation plus quantum phase esti-
mation (PEA) turns out much less accurate, amply demon-
strating that the fully quantum approach is very demanding on 
coherence time.

10.1.4. He-H+ ground-state energy curve. The QVE was 
originally applied to the helium-hydride cation He–H+ prob-
lem on a 2-qubit photonic processor by Peruzzo et al [456] . 
Recently, Wang et al [473] applied the IPEA to the He–H+ 
problem using a solid-state quantum register realised in a 
nitrogen-vacancy centre (NVC) in diamond, reporting an 
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stochastic calculus concerns generalisation of the Langevin 
equation to quantum systems. Because of the relation to stochas-
tic processes one has adopted the term ‘stoquastic’ to refer to 
quantum Hamiltonians where all off-diagonal matrix elements 
in the standard basis are real and non-positive [401]. Stoquastic 
Hamiltonians are very common in physics. Among spin-1/2 
models, the well-studied ferromagnetic Heisenberg models and 
the quantum transverse Ising model [79] are stoquastic. Another 
example is a Heisenberg antiferromagnet on a cubic lattice.

Barends et  al chose to investigate a stoquastic frustrated 
Ising Hamiltonian having random local X and Z "elds, and 
random zz couplings. Non-stoquastic problems have addi-
tional random xx couplings. The results show that the system 
can "nd the ground states of both stoquastic and non-stoquas-
tic Hamiltonians with comparable performance.

9.6. Digital quantum simulation of fermionic models

Computational physics, chemistry and materials science deal 
with the structure and dynamics of electronic systems: atoms, 
molecules, solids, liquids, soft matter, etc. To describe these 
systems one needs the full machinery of quantum many-body 
theory involving fermionic and bosonic particles and exci-
tations. So far a we have been working with 2-level (spin) 
systems coupled to bosonic modes. However, to describe 
electronic systems, the fermionic anti-commutation rules have 
to be built in. One way to do this was invented a long time 
ago in the form of the Jordan–Wigner (JW) transformation 

[402]. One then works in the occupation-number representa-
tion and keeps track of parity under permutations via the the 
anti- commutation rules of a set of auxiliary Pauli σ operators 
embedded in the fermionic creation and annihilation opera-
tors. In this way the number of σ operators scales as O(n), i.e. 
as the number of qubits.

Bravyi and Kitaev [403] derived an alternative (BK) trans-
formation, using the qubits for storing parities rather than 
occupation numbers. This scheme also maps the fermionic 
operators on products of Pauli σ operators. One advantage, 
however, is that the number of σ operators scales as O(logn), 
which will be important for simulation of large systems that 
require large numbers of qubits.

These methods have been developed theoretically and 
simulated classically over the last 15 years [390, 404–409], 
but never explored experimentally, until now. The "rst exper-
imental applications ever, with superconducting circuits, 
have recently been published, implementing digital simula-
tion of the Fermi–Hubbard model [36] and the ground state 
binding curve of the hydrogen molecule, H2 [38] (see further 
section 10.1.4).

For illustration of the approach to an elementary fermonic 
many-body system, consider a closed-shell atom or molecule. 
The general second-quantised Hamiltonian is given by:

Ĥ =
∑

pq

hpqc+p cq +
1
2

∑

pqrs

hpqrsc+p c+q crcs

 
(96)

where the "rst term describes the single-particle kinetic and 
potential energies, and the second term the 2-body Coulomb 
interaction. The indices refer to the set of basis orbitals (fermi-
onic modes) used to expand the Hamiltonian.

The simplest possible case is the ground state of a 2-elec-
tron system with a minimal basis of 2 states: a He atom with 
1s ↑ 1s ↓, or a H2 molecule with 1σ ↑ 1σ ↓. The Hartree 
Hamiltonian is then given by:

Ĥ = h1c+1 c1 + h2c+2 c2 + V12c+1 c1c+2 c2 (97)

Figure 26. (a) Two-spin XY model: Circuit diagram implementing the ÛXY(t) gate for a certain time t = τ . (b) Two-spin Heisenberg 
(XYZ) model: Circuit diagram implementing the ÛXYZ(t) gate (equation (90)) for a certain time t = τ . (c) Time evolution ÛXY(t) of the 
two-spin XY model: Experimentally determined coordinates of the Bloch vectors. Red (Q1) and blue (Q2) points are compared to the ideal 
paths shown as dashed lines in the XY model. (d) describes the same thing for the Heisenberg (XYZ) model. Reproduced from [192].  
CC BY 3.0.

Figure 27. Protocol to decompose and simulate Ising XY spin 
dynamics in a homogeneous transverse magnetic "eld. Reproduced 
from [192]. CC BY 3.0.
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stochastic calculus concerns generalisation of the Langevin 
equation to quantum systems. Because of the relation to stochas-
tic processes one has adopted the term ‘stoquastic’ to refer to 
quantum Hamiltonians where all off-diagonal matrix elements 
in the standard basis are real and non-positive [401]. Stoquastic 
Hamiltonians are very common in physics. Among spin-1/2 
models, the well-studied ferromagnetic Heisenberg models and 
the quantum transverse Ising model [79] are stoquastic. Another 
example is a Heisenberg antiferromagnet on a cubic lattice.

Barends et  al chose to investigate a stoquastic frustrated 
Ising Hamiltonian having random local X and Z "elds, and 
random zz couplings. Non-stoquastic problems have addi-
tional random xx couplings. The results show that the system 
can "nd the ground states of both stoquastic and non-stoquas-
tic Hamiltonians with comparable performance.

9.6. Digital quantum simulation of fermionic models

Computational physics, chemistry and materials science deal 
with the structure and dynamics of electronic systems: atoms, 
molecules, solids, liquids, soft matter, etc. To describe these 
systems one needs the full machinery of quantum many-body 
theory involving fermionic and bosonic particles and exci-
tations. So far a we have been working with 2-level (spin) 
systems coupled to bosonic modes. However, to describe 
electronic systems, the fermionic anti-commutation rules have 
to be built in. One way to do this was invented a long time 
ago in the form of the Jordan–Wigner (JW) transformation 

[402]. One then works in the occupation-number representa-
tion and keeps track of parity under permutations via the the 
anti- commutation rules of a set of auxiliary Pauli σ operators 
embedded in the fermionic creation and annihilation opera-
tors. In this way the number of σ operators scales as O(n), i.e. 
as the number of qubits.

Bravyi and Kitaev [403] derived an alternative (BK) trans-
formation, using the qubits for storing parities rather than 
occupation numbers. This scheme also maps the fermionic 
operators on products of Pauli σ operators. One advantage, 
however, is that the number of σ operators scales as O(logn), 
which will be important for simulation of large systems that 
require large numbers of qubits.

These methods have been developed theoretically and 
simulated classically over the last 15 years [390, 404–409], 
but never explored experimentally, until now. The "rst exper-
imental applications ever, with superconducting circuits, 
have recently been published, implementing digital simula-
tion of the Fermi–Hubbard model [36] and the ground state 
binding curve of the hydrogen molecule, H2 [38] (see further 
section 10.1.4).

For illustration of the approach to an elementary fermonic 
many-body system, consider a closed-shell atom or molecule. 
The general second-quantised Hamiltonian is given by:
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where the "rst term describes the single-particle kinetic and 
potential energies, and the second term the 2-body Coulomb 
interaction. The indices refer to the set of basis orbitals (fermi-
onic modes) used to expand the Hamiltonian.

The simplest possible case is the ground state of a 2-elec-
tron system with a minimal basis of 2 states: a He atom with 
1s ↑ 1s ↓, or a H2 molecule with 1σ ↑ 1σ ↓. The Hartree 
Hamiltonian is then given by:

Ĥ = h1c+1 c1 + h2c+2 c2 + V12c+1 c1c+2 c2 (97)

Figure 26. (a) Two-spin XY model: Circuit diagram implementing the ÛXY(t) gate for a certain time t = τ . (b) Two-spin Heisenberg 
(XYZ) model: Circuit diagram implementing the ÛXYZ(t) gate (equation (90)) for a certain time t = τ . (c) Time evolution ÛXY(t) of the 
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Figure 27. Protocol to decompose and simulate Ising XY spin 
dynamics in a homogeneous transverse magnetic "eld. Reproduced 
from [192]. CC BY 3.0.
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with expectation value:

〈Ĥ〉 =
∑

iα

hiα〈σiα〉+
∑

iα,jβ

hiα,jβ〈σiασjβ〉+ .... (111)

The coef!cients are determined using a classical quantum 
chemistry package.

The expectation value of a tensor product 〈σiασjβσkγ .....〉 
of an arbitrary number of Pauli operators can be estimated 
by local measurement of each qubit [54], independent meas-
urements that can be performed in parallel. The advantage of 
this approach [456] is then that the coherence time to make 
a single measurement after preparing the state is O(1). The 
disadvantage relative to the PEA is that the scaling in the total 
number of operations as a function of the desired precision 
is quadratically worse [456]. The scaling will also re"ect the 
number of state preparation repetitions required, whereas in 
PEA the number of state preparation steps is constant.

In the end, however, the QEE dramatically reduces the 
coherence time requirement, while maintaining an exponen-
tial advantage over the classical case by adding only a polyno-
mial number of repetitions with respect to QPE [456].

10.1.2. Quantum variational eigensolver. The quantum vari-
ational eigensolver (QVE) [456] is based on the Ritz varia-
tional principle, !nding the minimum of the expectation value 
of the Hamiltonian under variation of the trial state function: 
(i) prepare the trial state |ψ〉; (ii) compute the Rayleigh–Ritz 
quotient 〈Hi〉 = 〈ψ|Ĥi|ψ〉/〈ψ||ψ〉 of all the terms in the Ham-
iltonian using the QEE as a subroutine; (iii) calculate 

∑
i 〈Hi〉; 

(iv) compare the resulting energy with the previous runs and 
feed back new parameters for the trial state. Note that the only 
step that is quantum is step (iii)—the other steps are prepared 
using a classical computer.

The issue now concerns state preparation. One example 
of a quantum state parameterised by a polynomial number 
of parameters for which there is no known ef!cient classical 
implementation is the unitary coupled cluster ansatz (UCC) 
[394, 456]

|ψ〉 = eT−T†
|ψref〉 (112)

where |ψref〉 is some reference state, usually the Hartree Fock 
ground state, and T is the cluster operator for an N electron 
system, de!ned by operators

T = T1 + T2 + T3 + .... + TN (113)

producing 1, 2, 3, ...., N  electron-hole pairs from the N-electron 
reference state. Explicity for T1 and T2:

T1 =
∑

pq

tpqc+p cq (114)

T2 =
∑

pqrs

tpqrsc+p c+q crcs (115)

The series in equations (114) and (115) generate in principle 
all possible con!gurations for FCI, producing all possible 
ground and excited state correlations.

In real molecules, often a limited number of these correla-
tions produce the bulk of the interaction energy due to the 

Coulomb repulsion. The problem is that to achieve the acc-
uracy needed for describing realistic molecular chemical 
energy surfaces and accurately predicting chemical reaction 
paths, a large number of small correlations are needed to build 
up to the !nal accurate result. This is QMA-hard, i.e. intrac-
table for both classical and quantum computers. It therefore 
becomes a question of useful approximations. Again, note 
here the recent work by Carleo and Troyer [363].

In the case of the two-electron H2 and He–H+ molecules, 
N = 2. The cluster operators are then limited to T1 and T2 in 
equation (112) and it is possible to apply the full machinery 
with suitable approximations and to obtain chemical accuracy.

10.1.3. H–H ground-state energy curve. We will now describe 
an experimental application of the QVE to the problem of the 
ground-state energy curve of the hydrogen molecule [38].

For a 2-electron system, the Hamiltonian reduces to

Ĥ =
∑

iα

hiα(R) σiα +
∑

iα,jβ

hiα,jβ(R) σiασjβ (116)

or equivalently

Ĥ = g01+ g1Z0 + g2Z1 + g3Z0Z1 + g4X0X1 + g5Y0Y1 (117)

where the set of parameters gi = gi(R) depends on the H–H 
distance and is obtained from the expectation values of the 
Hamiltonian terms evaluated on a classical computer using 
the basis (reference) states.

We discussed quantum state preparation in general in sec-
tion 9, and the coupled-cluster approach above. In the QVE, 
the state |ψ(θ)〉 is parameterised by the action of a quantum 
circuit Û(θ) on an initial state |ψref〉, i.e. |ψ(θ)〉 = Û(θ)|ψref〉. 
Even if |ψ(θ)〉 is a simple product state and Û(θ) is a very 
shallow circuit, |ψref〉 can contain complex many-body cor-
relations and span an exponential number of standard basis 
states.

The unitary coupled cluster approach states that the ground 
state of equation (112) can be expressed as

|ψ(θ)〉 = Û(θ)|ψHF〉 = e−iθX0Y1 |01〉 (118)

where |01〉 is the Hartree–Fock (mean-!eld) state of molecu-
lar hydrogen in the representation of equation (112). The gate 
model circuit that performs this unitary mapping is shown in 
the software section of !gure 29.

The total bonding energy curve in !gure 30 demonstrates 
chemical accuracy (better than 10−3 hartree), which is a very 
important result. In contrast, the calculation using the full 
canonical protocol of trotterisation plus quantum phase esti-
mation (PEA) turns out much less accurate, amply demon-
strating that the fully quantum approach is very demanding on 
coherence time.

10.1.4. He-H+ ground-state energy curve. The QVE was 
originally applied to the helium-hydride cation He–H+ prob-
lem on a 2-qubit photonic processor by Peruzzo et al [456] . 
Recently, Wang et al [473] applied the IPEA to the He–H+ 
problem using a solid-state quantum register realised in a 
nitrogen-vacancy centre (NVC) in diamond, reporting an 
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|cS that minimizes

hc j H j ci
hc j ci : ð3Þ

By varying the experimental parameters in the preparation of
|cS and computing the Rayleigh–Ritz quotient using QEE as
a subroutine in a classical minimization, one may prepare
unknown eigenvectors. At the termination of the algorithm, a
simple prescription for the reconstruction of the eigenvector is
stored in the final set of experimental parameters that define |cS.

If a quantum state is characterized by an exponentially large
number of parameters, it cannot be prepared with a polynomial
number of operations. The set of efficiently preparable states are
therefore characterized by polynomially many parameters, and
we choose a particular set of ansatz states of this type. Under
these conditions, a classical search algorithm on the experimental
parameters that define |cS needs only explore a polynomial
number of dimensions—a requirement for the search to be
efficient. One example of a quantum state parameterized by a
polynomial number of parameters for which there is no known
efficient classical implementation is the unitary coupled cluster
ansatz29

j Ci ¼ eT $Tw j Firef : ð4Þ

where |FSref is some reference state, usually the Hartree Fock
ground state, and T is the cluster operator for an N electron
system, defined by

T ¼ T1þT2þT3þ :::þTN ; ð5Þ

where

T1 ¼
X

pr

tr
pâwpâr ð6Þ

T2 ¼
X

pqrs

trs
pqâwpâwqârâs ð7Þ

and higher-order terms follow logically. It is clear that by
construction the operator (T$Tw) is anti-hermitian,
and exponentiation maps it to a unitary operator U ¼ eðT $TT Þ.
For any fixed excitation level k, the reduced cluster operator is

written as

TðkÞ ¼
Xk

i¼1

Ti: ð8Þ

In general no efficient implementation of this ansatz has yet been
developed for a classical computer, even for low-order cluster
operators, due to the non-truncation of the BCH series29.
However, this state may be prepared efficiently on a quantum
device. The reduced anti-hermitian cluster operator (T(k)$T(k)w)
is the sum of a polynomial number of terms—namely, it contains
a number of terms O(Nk(M$N)k), where M is the number of
single-particle orbitals. By defining an effective Hermitian
Hamiltonian H¼ i(T(k)$T(k)w) and performing the Jordan–
Wigner transformation to reach a Hamiltonian that acts on the
space of qubits, ~H, we are left with a Hamiltonian that is a sum of
polynomially many products of Pauli operators. The problem
then reduces to the quantum simulation of this effective
Hamiltonian, ~H, which can be done in polynomial time using
the procedure outlined by Ortiz et al.23 We note that while this
state preparation procedure utilizes tools from quantum
simulation, the total effective time of evolution is fixed by the
expansion coefficients trs

pq. This is in contrast to the normal
difficulties encountered in QPE, where simulations must be
carried out for times that are exponential in the desired bits of
precision.

While there is currently no known efficient classical algorithm
based on these ansatz states, non-unitary coupled cluster ansatz is
sometimes referred to as the ‘gold standard of quantum
chemistry’ as it is the standard of accuracy to which other
methods in quantum chemistry are often compared. The unitary
version of this ansatz is thought to yield superior results to even
this ‘gold standard’29.

Prototype demonstration. We have implemented the QPU using
integrated quantum photonics technology30. Our device, shown
schematically in Fig. 2, is a reconfigurable waveguide chip that
can prepare and measure arbitrary two-bit pure states using
several single-qubit rotations and one two-qubit entangling gate.
The state is path-encoded using photon pairs generated via a
spontaneous parametric downconversion process. State
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Figure 1 | Architecture of the quantum-variational eigensolver. In QEE, quantum states that have been previously prepared are fed into the quantum
modules, which compute /HiS, where Hi is any given term in the sum defining H. The results are passed to the CPU, which computes /HS. In the
quantum variational eigensolver, the classical minimization algorithm, run on the CPU, takes /HS and determines the new state parameters, which are
then fed back to the QPU.
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will explore implementations of this algorithm on the OpenSuperQ platform in combination with DMFT (Y1) and apply it to 
molecular materials. (Y2) 

USAAR in the process of adapting its existing methodology of variational cluster algorithms on a 
quantum computer – which are a generalization of DMFT – to concrete examples and for applications 
in concrete hardware. USAAR has also developed a roadmap to simulate systems capable of the 
fractional quantum Hall effect on quantum computers. See Deliverable 1.10 for details. FZJ plans 
solving the Hubbard model with JUQCS. 
 
 
Task 1.2 Benchmarking use-cases for machine learning and optimization 
 
1.2.1: Machine learning and AI applications: 

DoA: CHALMERS and UPV/ EHU will develop and benchmark QAOA use-cases on classical computers (i) to explore the 
performance of different number of steps in the QAOA and (ii) to investigate the scaling properties of the chosen use-cases, 
for an error free implementation, as well as for realistic error models from the hardware-based model (1.3.1). The result 
will be an optimized gate sequence that will be run by the experimental partners on the OpenSuperQ HW, as well as a 
report analyzing the quantum advantage in the cases considered. 

Flight Optimization using QAOA 

In collaboration with the Boeing subsidiary Jeppesen, CHALMERS has investigated the performance 
of the Quantum Approximate Optimization Algorithm (QAOA) for optimizing small but realistic 
instances derived from real world data of logistic scheduling relevant to airlines. Airlines today are 
faced with a number of large scale scheduling problems. One such problem is the tail assignment 
problem, which is the task of assigning individual aircraft (identified by the number on its tail fin) to a 
given set of flights, minimizing the overall cost.  

The QAOA is a variational hybrid quantum-classical algorithm recently introduced and likely to run on 
near-term quantum devices.  

 

FIGure 2:  Schematic representation of the QAOA. The quantum processor prepares the variational state, 
depending on variational parameters. The variational parameters (⃗γ, β⃗) are optimized in a closed loop using a 
classical optimizer.  

Jeppesen reduced real instances obtained from their customers to instances with 8, 15 and 25 
decision variables, which can be run on a quantum computer with 8, 15 and 25 qubits respectively. 
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FIG. 1. Schematic representation of the QAOA. The quan-
tum processor prepares the variational state, depending on
variational parameters. The variational parameters (~�, ~�) are
optimized in a closed loop using a classical optimizer.

where ĤC is the cost Hamiltonian given by Eq. (8), and
ĤM ⌘

P
n

i=1 �̂
x

i
is a so called mixing Hamiltonian. The

alternating sequence continues for a total of p times with
di↵erent variational parameters ~� = (�1, . . . , �p) with

�i 2 [0, 2⇡] if ĤC has integer-valued eigenvalues, and
~� = (�1, . . . ,�p) with �i 2 [0,⇡], such that the final vari-
ational state obtained is:

| p(~�, ~�)i ⌘ V̂ (�p)Û(�p) . . . V̂ (�1)Û(�1) |+i⌦n
. (17)

The parametrized quantum gates are then optimized in
a closed loop using a classical optimizer, see Fig. 1. The
objective of the classical optimizer is to find the opti-
mal variational parameters that minimize the expecta-
tion value of the cost Hamiltonian

(~�⇤, ~�⇤) = argmin
~�,~�

Ep(~�, ~�), (18)

where

Ep(~�, ~�) ⌘ h p(~�, ~�)|ĤC | p(~�, ~�)i . (19)

Note that this requires in principle multiple state prepa-
rations and measurements. Once the best possible varia-
tional parameters are found, they are used to create the
state | p(~�⇤, ~�⇤)i, using the quantum processor for the
state preparation. Then, one samples from this state by
measuring in the computational basis, and the cost of
the configuration obtained in the measurement, given by
Eq. (8), is evaluated. The latter step is classically e�-
cient.

The success probability is defined as the probability
of finding the qubits in their ground state configuration
|xsoli when performing a single shot measurement of the

| p(~�, ~�)i state, i.e.

Fp(~�, ~�) ⌘ | hxsol| p(~�, ~�)i |2, (20)

where xsol = x1x2 . . . xn is the bit string corresponding to
the solution. Given this success probability we can ask:
what is the probability of having observed the solution at
least once after m repeated measurements? The answer
is given by:

1� (1� Fp(~�, ~�))
m
. (21)

Thus to have the probability (1 � ") of observing the
solution, m has to be

m >
log "

log (1� Fp(~�, ~�))
. (22)

To fix the ideas, consider a fair coin. In order to have a
probability higher than 99.9 % of observing Head at least
once, one has to flip and “measure” the coin 10 times.

In what follows, we are going to apply this paradigm to
solve the Exact Cover problem, by using the correspond-
ing cost Hamiltonian, expressed by Eq. (8) with Jij and
hi given by Eq. (12) and (13) respectively.

IV. RESULTS

We will examine instances for three di↵erent problem
sizes of the tail assignment problem given in Table I, cor-
responding to 8, 15 and 25 routes. As clear from Eq. (8),
this requires quantum processors with 8, 15 and 25 qubits
respectively.

TABLE I. Information about the problem instances.

Routes Flights No. of instances No. of sol. per instance
8 77 10 1
15 77 9 1
25 278 10 1

A. Energy landscape

Firstly, we can reduce the search space by noting that
the eigenvalues of both Hamiltonians ĤC and ĤM are
integer-valued. As a consequence, the expectation value
Eq. (19) has even-symmetry, i.e. Ep(~�, ~�) = Ep(�~�,�~�).
This symmetry allow us to restrict the domain of each �i
to �i 2 [0,⇡].

To highlight the di�culty of finding the best varia-
tional parameters we can visualize the landscape of the
expectation value E1(�,�), as well as the corresponding
success probability F1(�,�), as a function of � and �, for
p = 1, by evaluating them on a fine grid [0,⇡] ⇥ [0,⇡].
Fig. 2 shows the simulation result for one of the 25 route
instances. The variational parameters resulting in the
lowest expectation value, (�exp,�exp), and those result-
ing in the highest success probability, (�succ,�succ), are
approximately the same. In fact |�exp � �succ| ' 0 and
|�exp��succ| ' 0.047. Note that this is not obvious, since
QAOA only minimizes the expectation value, and does
not explicitly maximize the success probability; a low
expectation value does not necessarily translates onto a
high success probability. For example, consider a vari-
ational state that is a linear combination of low energy
excited eigenstates of the cost Hamiltonian. This state
could potentially have a low expectation value while the

HPCQC
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This means that the implementation of gate sequences can be, and has been, done at �,�>D�Z^͛ 
HPC as well as at FZJ. Therefore, as far as QChem is concerned, there is no need for transferring 

quantum circuit gate lists to FZJ. Instead we specify instances to be run at different workstations and 

HPC for comparison.  

2 Description of Activities 

2.1 Introduction 

During the first 12 months CHALMERS focused on training activities, learning QISKit and reproducing 

the ground state energies of H2, LiH, BeH2, Li2 and H2O single molecules with minimal basis sets. 

During months 12-18 CHALMERS has concentrated on the central OSQ objectives: ground state 

energies of single molecules of water (H2O) and hydrogen cyanide (HCN), as well as of the nitrogen 

(N2) molecule. Through interaction with IBMZ, Chalmers got access to upgraded QISKit code [4] 

implementing state-of-the-art reduction of qubit and gate resources. This now makes it possible to 

work with water clusters and HCN derivatives in useful applications executed on HPC quantum 

simulators.� 

2.2 Methodology 

At CHALMERS we have implemented the Python-based QISKit-aqua-chemistry software package 

[5,6] on local workstations and on the C3SE HPC at CHALMERS, setting up and performing ground-

state calculations for water (H2O) and hydrogen cyanide (HCN) using the Variational Quantum 

Eigensolver (VQE) [8]:  

(i) Constructing the Hamiltonian and a parametrized trial wave function;  

(ii) Evaluating the expectation value (energy) of the Hamiltonian;  

(iii) Updating the parameters to minimise the energy.  

The first and third are performed on a classical computer, while the second /step (2) is performed on 

a quantum computer (real or simulated).  

 

The Variational Quantum Eigensolver (VQE) implements the Rayleigh-Ritz variational principle: 

 

       
 

The VQE is a classical-quantum hybrid algorithm where the trial function _\�T�! is created in the 

qubit register by gate operations. In a fully quantum HW calculation of the expectation value, the 

energy is estimated via quantum state tomography of each of the Pauli operator products of Hi. In 

quantum simulations on an HPC, the state vector is available classically, and the expectation value of 

H can be evaluated directly. The VQE scales badly for large molecules (due to repeated 

measurements/tomography to form the expectation value of the Hamiltonian, <H>. Nevertheless, 

the VQE is the common approach for small molecules with present NISQ HW. The phase-estimation 

algorithm (PEA) scales better, but involves much deeper circuits, and puts much higher demands on 

the coherence time of the q-register. 

 
The main steps in our VQE calculations are as follows: 

We start from a unitary coupled cluster (UCC) ansatz of the quantum state _\�T�!�with variational 

parameter T��

HPCQC

Quantum variational methods

Quantum Variational Eigensolver (VQE) Quantum Approximate Optimization
Algorithm (QAOA)
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We illustrate the VQE in some detail by showing how it works for the 2-electron hydrogen molecule. 
The fermionic operators in the Hamiltonian  
 

 
are transformed into products of Pauli operators that can operate on qubits while conserving the 
anticommutation rules  
 

 
or explicitly (renaming the Pauli operators):  
 

 
 
The electron correlation part is particularly simple because there are no exchange terms.  
 
The UCCSD approximation creates the trial function via double excitations from the Hartree-Fock 
(HF) mean-field reference state |01>, building-in electron pair-correlation effects.  

 
 
The Hartree-Fock reference state |01> is created through a bit flip operation:  X0|00> -->>|01>. The 
core of the UCCSD-generating quantum circuit is given by a CNOT, a parametrised Rz(T) rotation, and 
another CNOT (Fig.2(a)), generating the unitary operator in Fig.2(b): 
 

                        
 
Figure 2:         (a)        (b)     
 
The desired form in the UCCSD ansatz for _\�T�!�is obtained by additional 1q Pauli rotation gates (Fig. 
3): 
 

         
 
 Figure 3. The Variational Quantum Eigensolver (VQE) for H2 (adapted from [9]).  
 
Fig. 3 describes the measurement approach, needed for experimental implementations. However, 
since we are simulating the ideal quantum HW on an HPC, the required gate list to describe the 
quantum state vector does not involve the tomographic Rt gates and the final measurements. The 
expectation value <H> is evaluated directly via matrix operations. 
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will be specifically designed for this task by ZI. Building up on existing methods [Stenberg16, Chasseur15-17], 
USAAR will also refine techniques to characterize the system Hamiltonian, in particular residual cross-talk terms.  

Standardized sequences will be defined for pulse parameter calibration and benchmarking of the achieved fidelities. 
These will include (simultaneous) randomized benchmarking, gate set tomography and quantum process 
tomography, as well as specific error amplification sequences [Sheldon16] for calibration, or compressed sensing. 
The methods and the hardware infrastructure will be tested first on two-qubit devices and then extended to multi-
qubit settings of increasing complexity. At the end of the project we will have implemented automated calibration 
routines which achieve two-qubit gate fidelities above 99% in a 100+ qubit systems on the timescale of a few 
minutes by use of a parallelized control and readout system. To guarantee smooth exchange of pulses in functional, 
parametrized form and measured data (WP6) between the theory team at USAAR and experiments at IBMZ, 
ETHZ and CHALMERS, protocols and definitions for pulses and control schemes will be standardized.  

Modular control and measurement system with standardized interfaces. The collaborative nature of the project 
requires clear definitions and a modular approach for the control and measurement system such that hardware and 
software components can be developed by the partners and put together in all experimental labs and at the central 
site. The layers of the control stack in Fig. 8 show the essential modules, interfaces and data structures. A detailed 
definition of the individual elements and their standards will be developed in WP6. These interface definitions will 
serve as a standard for the consortium and will be promoted as standards for the larger community. 

In this context we plan to define the following interfaces: the Q-API provides the user with high-level 
programming environment, e.g. a web-based API or a software environment (python, jupyter notebooks, etc.). The 
Q-assembler interface contains the instruction set for abstract gates (e.g. H for a Hadamard gate, M for 
measurement). The Q-pulse LQWHUIDFH�FRPPXQLFDWHV�SDUDPHWHUL]HG�SXOVHV��H�J��µ*DXVVLDQ��DPSOLWXGH��ZLGWK�¶��DQG�
measurement data. Q-data defines the communication of measurement data, Q-components defines connectors, 
cables, bandwidth, mechanical supports between microwave components, and Q-launcher defines physical layout, 
impedance, materials, of signal carriers between package and on-chip circuits.  

This modular software and hardware structure will provide versatile functionality:  

1. Calibration and tune-up: A set of automated measurement routines will be used to fully characterize the 
system either via the Q-assembler or the Q-pulse interface. Open and closed control loops will communicate 
between Signal/Data analysis modules and the Q-SDK, Execution controller, or Signal generation module. 
These will be based on the benchmarking and calibration routines developed in WP1 and WP4.  

2. Operation at the experimental level: Experimentalists get access to all software, electronics and device 
levels. Experiments to extract device level information, such as photon number, cross-talk, etc. can be 
programmed either via the Q-API (e.g. jupyter notebook), Q-assembler (QASM script), Q-pulse (pulse 
sequence), or even at the Q-Components level using microwave test equipment such as a vector network 
analyzer to characterize response functions. Similarly, output signal data is accessible as analog signals (Q-
components), digitized waveforms (Q-pulse), binary values (Q-data) or expectation values (Q-API).    

3. User access: Provisions for running and testing algorithms without direct physical access to the system will be 
defined. Access at different levels will be defined. Basic users will have the possibility to run algorithms at the 
gate level, power users will have access at the pulse-level for optimal control and calibration. 

 

Figure 8. Structure of the control 
and measurement system 
comprising modules (blue boxes), 
interfaces (gray boxes), data 
containers for parameters and 
settings (darker blue squares: 
Up: user, Dp: device, Pp: pulse, 
Wp: waveform, Qp: quantum 
system parameters) and signal 
data containers (green boxes: 
P:pulses, W: waveforms, M: 
measurement outcomes, R: 
algorithmic results). The User 
provides input to the system in the 
form of algorithms and 
calibration sequences and 
obtains output in the form of 

measurement results, calibration and device parameters as well as system information for debugging. The user will be able 

QC/QPU

High-level languages/programs

HPC

HPC Microwave pulse train creates the Q-circuit in QPU HW

Example: Qiskit outputs a quantum circuit/ 
state/wave function for a chemistry problem

First created in HPC
May be NP-hard to create and run !!
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(c) 

 
Fig. 1: Problem instance of a tail-assignment problem. (a) airports that are involved; (b) the 472 flights between 
the airports that have to be performed; (c) unique solution with 9 routes covering the 472 flights exactly ones. 
 
FZJ has also solved various exact cover problem instances with up to 180 qubits by different methods: exact 
enumeration, the dancing links-based algorithm X, execution of the QAOA with JUQCS-G, and quantum 
annealing on a D-Wave 2000Q and a D-Wave Advantage system.  
 
As QAOA with JUQCS-G is a memory- and network-intensive application for a GPU-accelerated supercomputer, 
FZJ also used the exact cover instances to benchmark JUWELS BOOSTER. 
 
A small movie and a paper are in preparation. 
 
Quantum contextual memories 
 
UPV/EHU has developed a new data encoding protocol built upon the identification of sets of commuting 
parity observables (PO) forming quantum contexts. Specifically, this encoding protocol is based on the storage 
of classical bit-strings in the measurement statistics of sets of POs over a small set of selected maximally 
entangled context eigenstates. This selection is carried out by a hybrid quantum-classical machine learning 
algorithm —a discretely parameterized quantum circuit (PQC)— where parameters are tuned so as to minimize 
the use of quantum resources and maximize both encoding and posterior retrieval fidelities. On the other 
hand, the retrieval protocol is based on a measurement-based filtering process over these set of selected 
encoding states. UPV/EHU has provided with a detailed statistical analysis on its efficiency bounds, proving its 
efficiency for tasks which require access to small fractions of the stored data at a time (e.g. decision trees). In 
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enumeration, the dancing links-based algorithm X, execution of the QAOA with JUQCS-G, and quantum 
annealing on a D-Wave 2000Q and a D-Wave Advantage system.  
 
As QAOA with JUQCS-G is a memory- and network-intensive application for a GPU-accelerated supercomputer, 
FZJ also used the exact cover instances to benchmark JUWELS BOOSTER. 
 
A small movie and a paper are in preparation. 
 
Quantum contextual memories 
 
UPV/EHU has developed a new data encoding protocol built upon the identification of sets of commuting 
parity observables (PO) forming quantum contexts. Specifically, this encoding protocol is based on the storage 
of classical bit-strings in the measurement statistics of sets of POs over a small set of selected maximally 
entangled context eigenstates. This selection is carried out by a hybrid quantum-classical machine learning 
algorithm —a discretely parameterized quantum circuit (PQC)— where parameters are tuned so as to minimize 
the use of quantum resources and maximize both encoding and posterior retrieval fidelities. On the other 
hand, the retrieval protocol is based on a measurement-based filtering process over these set of selected 
encoding states. UPV/EHU has provided with a detailed statistical analysis on its efficiency bounds, proving its 
efficiency for tasks which require access to small fractions of the stored data at a time (e.g. decision trees). In 

Problem instance of a tail-assignment problem. 
-- the 472 flights between the airports that have to be performed; 
-- unique solu?on with 9 routes covering the 472 flights exactly once.
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Task 1.2.1: Machine learning and AI applications
Progress achieved/main conclusions (CHALMERS, FZJ)

• MS6 (M24): Implementation of quantum circuit gate sequences 
for use cases on HPC: QAOA à Passed 

QAOA Highlights: 
• Flight Optimization: QAOA for the Tail Assignment problem 

(ExactCover, NP-complete) on q-simulators and on 
CHALMERS’ 2-qubit QPU  (CHALMERS, FZJ)

• QAOA finds optimal set of routes in instances derived from 
• real-world data for 8, 15 and 25 qubits/decision variables.  

• QAOA for ExactCover implemented experimentally on
2q (CHALMERS), and 3q & 7q (ETHZ) QPUs

• (FZJ)  M. Willsch et al., Benchmarking the Quantum Approximate Optimization Algorithm; 
arXiv:1907.02359.

• (CHALMERS)  P. Vikstål et a., Applying the Quantum Approximate Optimization Algorithm
to the Tail Assignment Problem; arXiv:1912.10499.

• (CHALMERS)  A. Bengtsson, P. Vikstål, et al., Quantum approximate optimization of the exact-cover problem on a superconducting quantum processor; 
arXiv:1912.10495.

• (ETHZ)  N. Lacroix, et al., Improving the Performance of Deep Quantum Optimization Algorithms with Continuous Gate Sets, (2020), in preparation

 

OpenSuperQ  WPL Report template  9/24  

will explore implementations of this algorithm on the OpenSuperQ platform in combination with DMFT (Y1) and apply it to 
molecular materials. (Y2) 

USAAR in the process of adapting its existing methodology of variational cluster algorithms on a 
quantum computer – which are a generalization of DMFT – to concrete examples and for applications 
in concrete hardware. USAAR has also developed a roadmap to simulate systems capable of the 
fractional quantum Hall effect on quantum computers. See Deliverable 1.10 for details. FZJ plans 
solving the Hubbard model with JUQCS. 
 
 
Task 1.2 Benchmarking use-cases for machine learning and optimization 
 
1.2.1: Machine learning and AI applications: 

DoA: CHALMERS and UPV/ EHU will develop and benchmark QAOA use-cases on classical computers (i) to explore the 
performance of different number of steps in the QAOA and (ii) to investigate the scaling properties of the chosen use-cases, 
for an error free implementation, as well as for realistic error models from the hardware-based model (1.3.1). The result 
will be an optimized gate sequence that will be run by the experimental partners on the OpenSuperQ HW, as well as a 
report analyzing the quantum advantage in the cases considered. 

Flight Optimization using QAOA 

In collaboration with the Boeing subsidiary Jeppesen, CHALMERS has investigated the performance 
of the Quantum Approximate Optimization Algorithm (QAOA) for optimizing small but realistic 
instances derived from real world data of logistic scheduling relevant to airlines. Airlines today are 
faced with a number of large scale scheduling problems. One such problem is the tail assignment 
problem, which is the task of assigning individual aircraft (identified by the number on its tail fin) to a 
given set of flights, minimizing the overall cost.  

The QAOA is a variational hybrid quantum-classical algorithm recently introduced and likely to run on 
near-term quantum devices.  

 

FIGure 2:  Schematic representation of the QAOA. The quantum processor prepares the variational state, 
depending on variational parameters. The variational parameters (⃗γ, β⃗) are optimized in a closed loop using a 
classical optimizer.  

Jeppesen reduced real instances obtained from their customers to instances with 8, 15 and 25 
decision variables, which can be run on a quantum computer with 8, 15 and 25 qubits respectively. 

4Quantum Computerlevel 1 level p Classical Computer
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STOPYESNOIs objective met?

Update variational parameters
FIG. 1. Schematic representation of the QAOA. The quan-
tum processor prepares the variational state, depending on
variational parameters. The variational parameters (~�, ~�) are
optimized in a closed loop using a classical optimizer.

where ĤC is the cost Hamiltonian given by Eq. (8), and
ĤM ⌘

P
n

i=1 �̂
x

i
is a so called mixing Hamiltonian. The

alternating sequence continues for a total of p times with
di↵erent variational parameters ~� = (�1, . . . , �p) with

�i 2 [0, 2⇡] if ĤC has integer-valued eigenvalues, and
~� = (�1, . . . ,�p) with �i 2 [0,⇡], such that the final vari-
ational state obtained is:

| p(~�, ~�)i ⌘ V̂ (�p)Û(�p) . . . V̂ (�1)Û(�1) |+i⌦n
. (17)

The parametrized quantum gates are then optimized in
a closed loop using a classical optimizer, see Fig. 1. The
objective of the classical optimizer is to find the opti-
mal variational parameters that minimize the expecta-
tion value of the cost Hamiltonian

(~�⇤, ~�⇤) = argmin
~�,~�

Ep(~�, ~�), (18)

where

Ep(~�, ~�) ⌘ h p(~�, ~�)|ĤC | p(~�, ~�)i . (19)

Note that this requires in principle multiple state prepa-
rations and measurements. Once the best possible varia-
tional parameters are found, they are used to create the
state | p(~�⇤, ~�⇤)i, using the quantum processor for the
state preparation. Then, one samples from this state by
measuring in the computational basis, and the cost of
the configuration obtained in the measurement, given by
Eq. (8), is evaluated. The latter step is classically e�-
cient.
The success probability is defined as the probability

of finding the qubits in their ground state configuration
|xsoli when performing a single shot measurement of the

| p(~�, ~�)i state, i.e.

Fp(~�, ~�) ⌘ | hxsol| p(~�, ~�)i |2, (20)

where xsol = x1x2 . . . xn is the bit string corresponding to
the solution. Given this success probability we can ask:
what is the probability of having observed the solution at
least once after m repeated measurements? The answer
is given by:

1� (1� Fp(~�, ~�))
m
. (21)

Thus to have the probability (1 � ") of observing the
solution, m has to be

m >
log "

log (1� Fp(~�, ~�))
. (22)

To fix the ideas, consider a fair coin. In order to have a
probability higher than 99.9 % of observing Head at least
once, one has to flip and “measure” the coin 10 times.
In what follows, we are going to apply this paradigm to

solve the Exact Cover problem, by using the correspond-
ing cost Hamiltonian, expressed by Eq. (8) with Jij and
hi given by Eq. (12) and (13) respectively.

IV. RESULTS

We will examine instances for three di↵erent problem
sizes of the tail assignment problem given in Table I, cor-
responding to 8, 15 and 25 routes. As clear from Eq. (8),
this requires quantum processors with 8, 15 and 25 qubits
respectively.

TABLE I. Information about the problem instances.

Routes Flights No. of instances No. of sol. per instance
8 77 10 1
15 77 9 1
25 278 10 1

A. Energy landscape

Firstly, we can reduce the search space by noting that
the eigenvalues of both Hamiltonians ĤC and ĤM are
integer-valued. As a consequence, the expectation value
Eq. (19) has even-symmetry, i.e. Ep(~�, ~�) = Ep(�~�,�~�).
This symmetry allow us to restrict the domain of each �i
to �i 2 [0,⇡].

To highlight the di�culty of finding the best varia-
tional parameters we can visualize the landscape of the
expectation value E1(�,�), as well as the corresponding
success probability F1(�,�), as a function of � and �, for
p = 1, by evaluating them on a fine grid [0,⇡] ⇥ [0,⇡].
Fig. 2 shows the simulation result for one of the 25 route
instances. The variational parameters resulting in the
lowest expectation value, (�exp,�exp), and those result-
ing in the highest success probability, (�succ,�succ), are
approximately the same. In fact |�exp � �succ| ' 0 and
|�exp��succ| ' 0.047. Note that this is not obvious, since
QAOA only minimizes the expectation value, and does
not explicitly maximize the success probability; a low
expectation value does not necessarily translates onto a
high success probability. For example, consider a vari-
ational state that is a linear combination of low energy
excited eigenstates of the cost Hamiltonian. This state
could potentially have a low expectation value while the
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Task 1.2.1: Machine learning and AI applications
Progress achieved/main conclusions (CHALMERS)

• D1.4 , D1.5, WP1 PR
• MS2 (M12): Implementation of QBM and QAOA on classical computer  à Passed
• MS6 (M24): Implementation of quantum circuit gate sequences 

for use cases on HPC: QAOA à Passed !

Highlights: 
• Flight Optimization: QAOA for the Tail Assignment 

problem on q-simulators and on CHALMERS’ 

2-qubit QPU (CHALMERS, FZJ)

QAOA finds optimal set of routes in instances derived from 

real-world data for 8, 15 and 25 qubits/decision variables.  

M. Willsch et al., Benchmarking the Quantum Approximate Optimization Algorithm; 
arXiv:1907.02359.
P. Vikstål et a., Applying the Quantum Approximate Optimization Algorithm
to the Tail Assignment Problem; arXiv:1912.10499.
A. Bengtsson, P. Vikstål, et al., Quantum approximate optimization of the
exact-cover problem on a superconducting quantum processor; arXiv:1912.10495.
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will explore implementations of this algorithm on the OpenSuperQ platform in combination with DMFT (Y1) and apply it to 
molecular materials. (Y2) 

USAAR in the process of adapting its existing methodology of variational cluster algorithms on a 
quantum computer – which are a generalization of DMFT – to concrete examples and for applications 
in concrete hardware. USAAR has also developed a roadmap to simulate systems capable of the 
fractional quantum Hall effect on quantum computers. See Deliverable 1.10 for details. FZJ plans 
solving the Hubbard model with JUQCS. 
 
 
Task 1.2 Benchmarking use-cases for machine learning and optimization 
 
1.2.1: Machine learning and AI applications: 

DoA: CHALMERS and UPV/ EHU will develop and benchmark QAOA use-cases on classical computers (i) to explore the 
performance of different number of steps in the QAOA and (ii) to investigate the scaling properties of the chosen use-cases, 
for an error free implementation, as well as for realistic error models from the hardware-based model (1.3.1). The result 
will be an optimized gate sequence that will be run by the experimental partners on the OpenSuperQ HW, as well as a 
report analyzing the quantum advantage in the cases considered. 

Flight Optimization using QAOA 

In collaboration with the Boeing subsidiary Jeppesen, CHALMERS has investigated the performance 
of the Quantum Approximate Optimization Algorithm (QAOA) for optimizing small but realistic 
instances derived from real world data of logistic scheduling relevant to airlines. Airlines today are 
faced with a number of large scale scheduling problems. One such problem is the tail assignment 
problem, which is the task of assigning individual aircraft (identified by the number on its tail fin) to a 
given set of flights, minimizing the overall cost.  

The QAOA is a variational hybrid quantum-classical algorithm recently introduced and likely to run on 
near-term quantum devices.  
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depending on variational parameters. The variational parameters (⃗γ, β⃗) are optimized in a closed loop using a 
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where ĤC is the cost Hamiltonian given by Eq. (8), and
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is a so called mixing Hamiltonian. The

alternating sequence continues for a total of p times with
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tion value of the cost Hamiltonian
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Note that this requires in principle multiple state prepa-
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tional parameters are found, they are used to create the
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the solution. Given this success probability we can ask:
what is the probability of having observed the solution at
least once after m repeated measurements? The answer
is given by:
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. (21)

Thus to have the probability (1 � ") of observing the
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To fix the ideas, consider a fair coin. In order to have a
probability higher than 99.9 % of observing Head at least
once, one has to flip and “measure” the coin 10 times.
In what follows, we are going to apply this paradigm to

solve the Exact Cover problem, by using the correspond-
ing cost Hamiltonian, expressed by Eq. (8) with Jij and
hi given by Eq. (12) and (13) respectively.

IV. RESULTS

We will examine instances for three di↵erent problem
sizes of the tail assignment problem given in Table I, cor-
responding to 8, 15 and 25 routes. As clear from Eq. (8),
this requires quantum processors with 8, 15 and 25 qubits
respectively.
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expectation value E1(�,�), as well as the corresponding
success probability F1(�,�), as a function of � and �, for
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Fig. 2 shows the simulation result for one of the 25 route
instances. The variational parameters resulting in the
lowest expectation value, (�exp,�exp), and those result-
ing in the highest success probability, (�succ,�succ), are
approximately the same. In fact |�exp � �succ| ' 0 and
|�exp��succ| ' 0.047. Note that this is not obvious, since
QAOA only minimizes the expectation value, and does
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high success probability. For example, consider a vari-
ational state that is a linear combination of low energy
excited eigenstates of the cost Hamiltonian. This state
could potentially have a low expectation value while the
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For these small instances, the problem was reduced to an exact cover problem with one solution in 
each instance. Repeated runs of the QAOA identify the feasible solution with close to unit probability 
for all instances. Furthermore, patterns are observed in the variational parameters such that an  

 

Figure 3: (a) Average success probability as a function of the iteration level p using the best found variational 
parameters for the three different problem sizes. (b) Success probability as a function of p for one selected 
instance from each problem size. (c) Probability that a measurement of the final state will yield a certain cost 
(or equivalently, eigenvalue of the cost Hamiltonian) for the iteration levels p = 0, 1, 2, where p = 0 is the initial 
or “random” state |+⟩. (d) Graph representation of the three instances shown in (b).  

interpolation strategy can be employed which significantly simplifies the classical optimization part of 
the QAOA. Finally, an empirical relation was found between the connectivity of the problem graph 
and the single-shot success probability of the algorithm.  

As can be seen in Fig. 3, the QAOA algorithm does find the optimal solution for a limited iteration 
depth p in all cases. After these first positive results, published in ref. [1], the next step in the 
theoretical investigation will be to model the effect of limited gate fidelity and connectivity. Together 
with FZJ, CHALMERS will also explore larger instances with up to 40 decision variables/qubits. 

In addition, the flight optimization algorithm has been implemented on two-qubit hardware in the 
CHALMERS experimental team. In this publication different instances of the exact cover problem 
with two decision variables are solved using the QAOA algorithm. The performance of different 
classical optimization algorithms for finding the optimal angles is investigated and the effect of 
limited gate fidelity is explored. In particular, this implied that the best success probability was 
achieved at the p=2 iteration level, while increasing to p=3 reduced the success probability due to 
the increased effects of gate errors. The results are presented in ref. [2]. 

FZJ has benchmarked QAOA for weighted MaxCut and 2-satisfiability problems [9]. FZJ used quantum 
computer simulators (JUQCS and IBM Q) and the IBM Q Experience quantum processor for 
benchmarking. FZJ reproduced some of the results, which are reported in ref. [9], for applying QAOA 
to the tail assignment problem. Fig. 4 depicts results for 25-qubit problem instances and " = 1. The 
results are in good agreement with the results of CHALMERS reported in Fig. 2 of ref. [1]. 
 
FZJ plans to perform calculations for bigger instances of the tail assignment problem. Discussions 
with Jeppesen are ongoing. 
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Task 1.2.1: Machine learning and AI applications
Progress achieved/main conclusions (CHALMERS)

• D1.4 , D1.5, WP1 PR
• MS2 (M12): Implementation of QBM and QAOA on classical computer  à Passed
• MS6 (M24): Implementation of quantum circuit gate sequences 

for use cases on HPC: QAOA à Passed !

Highlights: 
• Flight Optimization: QAOA for the Tail Assignment 

problem on q-simulators and on CHALMERS’ 

2-qubit QPU (CHALMERS, FZJ)

QAOA finds optimal set of routes in instances derived from 

real-world data for 8, 15 and 25 qubits/decision variables.  

M. Willsch et al., Benchmarking the Quantum Approximate Optimization Algorithm; 
arXiv:1907.02359.
P. Vikstål et a., Applying the Quantum Approximate Optimization Algorithm
to the Tail Assignment Problem; arXiv:1912.10499.
A. Bengtsson, P. Vikstål, et al., Quantum approximate optimization of the
exact-cover problem on a superconducting quantum processor; arXiv:1912.10495.
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will explore implementations of this algorithm on the OpenSuperQ platform in combination with DMFT (Y1) and apply it to 
molecular materials. (Y2) 

USAAR in the process of adapting its existing methodology of variational cluster algorithms on a 
quantum computer – which are a generalization of DMFT – to concrete examples and for applications 
in concrete hardware. USAAR has also developed a roadmap to simulate systems capable of the 
fractional quantum Hall effect on quantum computers. See Deliverable 1.10 for details. FZJ plans 
solving the Hubbard model with JUQCS. 
 
 
Task 1.2 Benchmarking use-cases for machine learning and optimization 
 
1.2.1: Machine learning and AI applications: 

DoA: CHALMERS and UPV/ EHU will develop and benchmark QAOA use-cases on classical computers (i) to explore the 
performance of different number of steps in the QAOA and (ii) to investigate the scaling properties of the chosen use-cases, 
for an error free implementation, as well as for realistic error models from the hardware-based model (1.3.1). The result 
will be an optimized gate sequence that will be run by the experimental partners on the OpenSuperQ HW, as well as a 
report analyzing the quantum advantage in the cases considered. 

Flight Optimization using QAOA 

In collaboration with the Boeing subsidiary Jeppesen, CHALMERS has investigated the performance 
of the Quantum Approximate Optimization Algorithm (QAOA) for optimizing small but realistic 
instances derived from real world data of logistic scheduling relevant to airlines. Airlines today are 
faced with a number of large scale scheduling problems. One such problem is the tail assignment 
problem, which is the task of assigning individual aircraft (identified by the number on its tail fin) to a 
given set of flights, minimizing the overall cost.  

The QAOA is a variational hybrid quantum-classical algorithm recently introduced and likely to run on 
near-term quantum devices.  

 

FIGure 2:  Schematic representation of the QAOA. The quantum processor prepares the variational state, 
depending on variational parameters. The variational parameters (⃗γ, β⃗) are optimized in a closed loop using a 
classical optimizer.  

Jeppesen reduced real instances obtained from their customers to instances with 8, 15 and 25 
decision variables, which can be run on a quantum computer with 8, 15 and 25 qubits respectively. 

4

FIG. 1. Schematic representation of the QAOA. The quan-
tum processor prepares the variational state, depending on
variational parameters. The variational parameters (~�, ~�) are
optimized in a closed loop using a classical optimizer.

where ĤC is the cost Hamiltonian given by Eq. (8), and
ĤM ⌘

P
n

i=1 �̂
x

i
is a so called mixing Hamiltonian. The

alternating sequence continues for a total of p times with
di↵erent variational parameters ~� = (�1, . . . , �p) with

�i 2 [0, 2⇡] if ĤC has integer-valued eigenvalues, and
~� = (�1, . . . ,�p) with �i 2 [0,⇡], such that the final vari-
ational state obtained is:

| p(~�, ~�)i ⌘ V̂ (�p)Û(�p) . . . V̂ (�1)Û(�1) |+i⌦n
. (17)

The parametrized quantum gates are then optimized in
a closed loop using a classical optimizer, see Fig. 1. The
objective of the classical optimizer is to find the opti-
mal variational parameters that minimize the expecta-
tion value of the cost Hamiltonian

(~�⇤, ~�⇤) = argmin
~�,~�

Ep(~�, ~�), (18)

where

Ep(~�, ~�) ⌘ h p(~�, ~�)|ĤC | p(~�, ~�)i . (19)

Note that this requires in principle multiple state prepa-
rations and measurements. Once the best possible varia-
tional parameters are found, they are used to create the
state | p(~�⇤, ~�⇤)i, using the quantum processor for the
state preparation. Then, one samples from this state by
measuring in the computational basis, and the cost of
the configuration obtained in the measurement, given by
Eq. (8), is evaluated. The latter step is classically e�-
cient.

The success probability is defined as the probability
of finding the qubits in their ground state configuration
|xsoli when performing a single shot measurement of the

| p(~�, ~�)i state, i.e.

Fp(~�, ~�) ⌘ | hxsol| p(~�, ~�)i |2, (20)

where xsol = x1x2 . . . xn is the bit string corresponding to
the solution. Given this success probability we can ask:
what is the probability of having observed the solution at
least once after m repeated measurements? The answer
is given by:

1� (1� Fp(~�, ~�))
m
. (21)

Thus to have the probability (1 � ") of observing the
solution, m has to be

m >
log "

log (1� Fp(~�, ~�))
. (22)

To fix the ideas, consider a fair coin. In order to have a
probability higher than 99.9 % of observing Head at least
once, one has to flip and “measure” the coin 10 times.

In what follows, we are going to apply this paradigm to
solve the Exact Cover problem, by using the correspond-
ing cost Hamiltonian, expressed by Eq. (8) with Jij and
hi given by Eq. (12) and (13) respectively.

IV. RESULTS

We will examine instances for three di↵erent problem
sizes of the tail assignment problem given in Table I, cor-
responding to 8, 15 and 25 routes. As clear from Eq. (8),
this requires quantum processors with 8, 15 and 25 qubits
respectively.

TABLE I. Information about the problem instances.

Routes Flights No. of instances No. of sol. per instance
8 77 10 1
15 77 9 1
25 278 10 1

A. Energy landscape

Firstly, we can reduce the search space by noting that
the eigenvalues of both Hamiltonians ĤC and ĤM are
integer-valued. As a consequence, the expectation value
Eq. (19) has even-symmetry, i.e. Ep(~�, ~�) = Ep(�~�,�~�).
This symmetry allow us to restrict the domain of each �i
to �i 2 [0,⇡].

To highlight the di�culty of finding the best varia-
tional parameters we can visualize the landscape of the
expectation value E1(�,�), as well as the corresponding
success probability F1(�,�), as a function of � and �, for
p = 1, by evaluating them on a fine grid [0,⇡] ⇥ [0,⇡].
Fig. 2 shows the simulation result for one of the 25 route
instances. The variational parameters resulting in the
lowest expectation value, (�exp,�exp), and those result-
ing in the highest success probability, (�succ,�succ), are
approximately the same. In fact |�exp � �succ| ' 0 and
|�exp��succ| ' 0.047. Note that this is not obvious, since
QAOA only minimizes the expectation value, and does
not explicitly maximize the success probability; a low
expectation value does not necessarily translates onto a
high success probability. For example, consider a vari-
ational state that is a linear combination of low energy
excited eigenstates of the cost Hamiltonian. This state
could potentially have a low expectation value while the
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For these small instances, the problem was reduced to an exact cover problem with one solution in 
each instance. Repeated runs of the QAOA identify the feasible solution with close to unit probability 
for all instances. Furthermore, patterns are observed in the variational parameters such that an  

 

Figure 3: (a) Average success probability as a function of the iteration level p using the best found variational 
parameters for the three different problem sizes. (b) Success probability as a function of p for one selected 
instance from each problem size. (c) Probability that a measurement of the final state will yield a certain cost 
(or equivalently, eigenvalue of the cost Hamiltonian) for the iteration levels p = 0, 1, 2, where p = 0 is the initial 
or “random” state |+⟩. (d) Graph representation of the three instances shown in (b).  

interpolation strategy can be employed which significantly simplifies the classical optimization part of 
the QAOA. Finally, an empirical relation was found between the connectivity of the problem graph 
and the single-shot success probability of the algorithm.  

As can be seen in Fig. 3, the QAOA algorithm does find the optimal solution for a limited iteration 
depth p in all cases. After these first positive results, published in ref. [1], the next step in the 
theoretical investigation will be to model the effect of limited gate fidelity and connectivity. Together 
with FZJ, CHALMERS will also explore larger instances with up to 40 decision variables/qubits. 

In addition, the flight optimization algorithm has been implemented on two-qubit hardware in the 
CHALMERS experimental team. In this publication different instances of the exact cover problem 
with two decision variables are solved using the QAOA algorithm. The performance of different 
classical optimization algorithms for finding the optimal angles is investigated and the effect of 
limited gate fidelity is explored. In particular, this implied that the best success probability was 
achieved at the p=2 iteration level, while increasing to p=3 reduced the success probability due to 
the increased effects of gate errors. The results are presented in ref. [2]. 

FZJ has benchmarked QAOA for weighted MaxCut and 2-satisfiability problems [9]. FZJ used quantum 
computer simulators (JUQCS and IBM Q) and the IBM Q Experience quantum processor for 
benchmarking. FZJ reproduced some of the results, which are reported in ref. [9], for applying QAOA 
to the tail assignment problem. Fig. 4 depicts results for 25-qubit problem instances and " = 1. The 
results are in good agreement with the results of CHALMERS reported in Fig. 2 of ref. [1]. 
 
FZJ plans to perform calculations for bigger instances of the tail assignment problem. Discussions 
with Jeppesen are ongoing. 

 

Flight Optimization: QAOA for the Tail Assignment problem  
(“Traveling Salesman” ExactCover, NP-complete) on FZJ q-simulators

Collaboration Chalmers/Jeppesen/FZJ; 
HPC/GPU Q-simulation
40 qubits; unique ground state solution: 

|0000000001010010011001000001000000000110 >

Each qubit represents a flight route.
The 9 1`s represent 9 routes covered exactly once 

P. Vikstål et a., Applying the Quantum Approximate Optimization
Algorithm to the Tail Assignment Problem, Phys. Rev. Appl. 14, 
034009 (2020). (25q simulation)

A. Bengtsson, et al. Phys. Rev. Appl. 14, 034010 (2020). 
Exp: 2 qubit processor.
N. Lacroix, ... A. Wallraff, Phys. Rev. X Quantum 1, 110304 (2020). 
Exp: 7 qubit processor.
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• Harrigan et al. (Google), Quantum approximate op?miza?on of non-planar graph problems on a planar 
superconduc?ng processor, Nature Physics 17, 332–336 (2021) 
(Theory & exp; 54 qubit superconducTng QPU) ARTICLESNATURE PHYSICS

problems, these graphs are non-planar and many ancilla would be 
required to embed them in (quasi-)planar graphs matching the 
qubit connectivity of most hardware platforms13. The challenge of 
realizing higher-dimensional problem graphs severely limits the 
applicability of scalable architectures for quantum annealing14–16 
and corresponds to increased circuit complexity in digital quantum 
algorithms for optimization such as QAOA.

This work builds on previous experimental demonstrations 
of QAOA on superconducting qubits17–20, ion traps21 and photon-
ics systems22, with a full comparison found in the Supplementary 
Information. The Google Sycamore superconducting quantum pro-
cessor consists of a two-dimensional array of 54 transmon qubits23 
with each qubit tunably coupled to four nearest neighbours in a 
rectangular lattice. In this study, all device calibration was fully auto-
mated24,25 and data were collected using a cloud interface to the plat-
form programmed using Cirq26. Our experiment was restricted to 23 
physical qubits of the larger Sycamore device, arranged as depicted 
in Fig. 1a. We are able to experimentally resolve increased perfor-
mance with greater QAOA depth and apply the algorithm to cost 
functions on graphs that deviate markedly from our hardware con-
nectivity. Owing to the low error rates of the Sycamore platform, the 
trade-off between the theoretical increase in quality of solutions with 
increasing decoherence due to noise is apparent for hardware-native 
problems as we scale the depth hyperparameter. We also apply the 
algorithm to non-native graph problems with their necessary com-
pilation overhead and study the scaling of solution quality and prob-
lem size. Our results reveal that the performance of the QAOA is 
qualitatively different when applied to hardware-native graphs 
versus more complex graphs, highlighting the challenge of scaling 
QAOA to problems of industrial importance.

The shallowest depth version of the QAOA consists of the appli-
cation of two unitary operators: the problem unitary (UC) and the 
driver unitary (UB). The first of these depends on the parameter γ 
and applies a phase to pairs of bits according to the problem-specific 
cost operator C:

C ¼
X

j < k
wjkZjZk ð1Þ

UC γð Þ ¼ e$iγC ¼
Y

j < k
e$iγwjkZjZk ; ð2Þ

where we restrict our study to two-local cost operators with Zj and 
Zk denoting the Pauli Z operator on qubits j and k, respectively, and 
the wjk corresponding to scalar weights with values {0, ±1}. Because 
the clauses act on at most two qubits, we are able to associate a graph 
with a given problem instance with weighted edges given by the wjk 
adjacency matrix. The second unitary depends on the parameter 
β, is problem independent, and serves to drive transitions between 
bitstrings within the superposition state:

UB βð Þ ¼ e$iβB ¼
Y

j
e$iβXj ; B ¼

X
j
Xj ð3Þ

where Xj is the Pauli X operator on qubit j. Both operators can be 
implemented by sequentially evolving under each term of the prod-
uct; specifically the problem unitary is applied with a sequence of 
two-body interactions while the driver unitary uses single-qubit 
rotations on each qubit. For higher-depth versions of the algorithm, 
the two unitaries are sequentially re-applied each with their own β 
and γ. The number of applications of the pair of unitaries is repre-
sented by the hyperparameter p giving parameter vectors γ = (γ1, …, 
γp) and β = (β1, …, βp). For n qubits, we prepare the parameterized 
state

γ; βj i ¼ UBðβpÞUCðγpÞ $ $ $UBðβ1ÞUCðγ1Þ þj i&n; ð4Þ

where þj i"n

I
 is the symmetric superposition of computational basis 

states. The algorithm is shown graphically in Fig. 1d.

Compilation and problem families
While the driver unitary UB is straightforward to implement, care 
must be taken to compile the problem unitary UC to the constraints 
of our superconducting processor. We approach compilation as 
two distinct steps: routing and gate synthesis. The need for routing 
arises when simulating UC for a cost function whose graph is not a 
subgraph of our planar hardware connectivity. To simulate such UC, 
we perform layers of swap gates that permute qubits such that all 
edges in the problem graph correspond to an edge in the hardware 
graph at least once, at which point the corresponding cost function 
terms can be implemented.

In this study, we consider three families of binary optimiza-
tion problems typified by their graph representation. First, we 
study problem graphs that match the connectivity of our hardware, 
which we term ‘hardware grid problems’. This family of problems 
is composed of random instances generated by sampling wjk to 
be ±1 for edges in the device topology or a subgraph thereof, as 
depicted in Fig. 1a. While formally NP-hard12 (and thus, unlikely 
to be efficiently solvable in the worst case), problems defined on 
these graphs with couplings chosen in this fashion are known to be 
classically efficient to exactly solve on average27. However, we study 
these problems here as they are a simple example of a problem that 
does not require routing.

Next, we study instances of the MaxCut problem on three-regular 
graphs. This is a prototypical discrete optimization problem with a 
low, fixed node degree but a high dimension that cannot be trivially 
mapped to a planar architecture28. It more closely matches prob-
lems of industrial interest, and an example is shown in Fig. 1b. For 
MaxCut on degree-three graphs, there is a classical approximation 
algorithm that achieves an approximation ratio of 0.9326 (ref. 29), and 
it is NP-hard to achieve 331/332 + ε ≈ 0.997 for every ε > 0 (ref. 30).  

Hardware grida b c dThree-regular MaxCut Sherrington–Kirkpatrick model

∣+〉

∣+〉

∣+〉

∣+〉

∣+〉

UC(γ)

e–iβX

e–iβX

e–iβX

e–iβX

e–iβX

p

Fig. 1 | Problem families under study. a, Hardware grid problems with a graph matching the hardware connectivity of the 23 qubits used in this 
experiment. b, MaxCut on random three-regular graphs, with the largest instance depicted (22 qubits). c, The fully connected SK model shown at the 
largest size (17 qubits). d, QAOA uses p applications of problem and driver unitaries to approximate solutions to optimization problems.
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23 qubits

QAOA - HPC simulation and QC execution (Google, 2021)
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operator

Mixing operators
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The series of terms generates in principle all possible configurations for FCI, producing all possible 
ground and excited state correlations. The terms shown generate single (S) and double (D) excitations 
and gives the parametrised UCCSD trial-state approximation that we are using. The coefficients tpq and 
tpqrs are variational parameters determining the weight of the excited configuration. 
 
The UCCSD trial-state with fermionic operators must now be mapped onto qubit spin operators. 
Common transformations are Jordan-Wigner (JW), Bravyi-Kitaev (BK) and Parity, all designed to 
impose the anticommutation rules. The original UCCSD exponential is then expanded into exponentials 
of large numbers of products of Paul pin-operators acting on qubits. The parametrised initial trial state 
is then constructed through entangled quantum circuits: combinations of parametrised 1q-rotation 
gates and entangling CNOT gates. The size of the quantum circuit can finally be reduced by qubit 
reduction schemes and qubit tapering [7]. All this results in a state vector for the trial state. 
 
The fermionic operators in the Hamiltonian must also be expanded in products of Pauli spin-operators. 
The expectation value can then be calculated in two ways: (1) State-vector approach: direct calculation 
of <∑Hi> by matrix operations (QISKit state-vector backend); (2) Measurement approach: generating 
an ensemble of identical trial states and measuring the Pauli operators of the Hamiltonian terms Hi 
(Fig.1) (QISKit qasm HPC backend; or experimental q-HW backends).   
 

       
(a)             (b) 

Figure 1: The Variational Quantum Eigensolver (VQE) (1(a) [8]; 1(b) [Aspuru-Guzik et al.]). Figure 1(b) emphasises 
that there are two loops for updating the variational parameters: (i) an “internal” loop that optimises the 
variational (UCCSD) ansatz, and (ii) an “external” loop that minimises the energy. 
 
The QISKit gate lists involve the general parametrised Pauli operators for 1q-operations plus CNOT 
(controlled-X, cx), forming a universal set of quantum gate operations (see the Appendix).  
 
We illustrate the VQE in some detail by showing how it works for the 2-electron hydrogen molecule. 
The fermionic operators in the Hamiltonian  
 

 
are transformed into products of Pauli operators that can operate on qubits while conserving the 
anticommutation rules  
 

 
or explicitly (renaming the Pauli operators):  
 

x

producing 1, 2, 3, ...., N electron-hole pairs from the N-electron reference state. Explicity

for T1 and T2: x

T1 =
X

pq

t(✓)pqc
+
p
cq; T2 =

X

pqrs

t(✓)pqrsc
+
p
c+
q
crcs (97)

x

T1 =
X

pq

tpqc
+
p
cq; T2 =

X

pqrs

tpqrsc
+
p
c+
q
crcs (98)

x

Ĥ =
X

i↵

hi↵(R) �i↵ +
X

i↵,j�

hi↵,j�(R) �i↵�j� (99)

x

Ĥ = g01+ g1Z0 + g2Z1 + g3Z0Z1 + g4X0X1 + g5Y0Y1 (100)

12

|cS that minimizes

hc j H j ci
hc j ci : ð3Þ

By varying the experimental parameters in the preparation of
|cS and computing the Rayleigh–Ritz quotient using QEE as
a subroutine in a classical minimization, one may prepare
unknown eigenvectors. At the termination of the algorithm, a
simple prescription for the reconstruction of the eigenvector is
stored in the final set of experimental parameters that define |cS.

If a quantum state is characterized by an exponentially large
number of parameters, it cannot be prepared with a polynomial
number of operations. The set of efficiently preparable states are
therefore characterized by polynomially many parameters, and
we choose a particular set of ansatz states of this type. Under
these conditions, a classical search algorithm on the experimental
parameters that define |cS needs only explore a polynomial
number of dimensions—a requirement for the search to be
efficient. One example of a quantum state parameterized by a
polynomial number of parameters for which there is no known
efficient classical implementation is the unitary coupled cluster
ansatz29

j Ci ¼ eT $Tw j Firef : ð4Þ

where |FSref is some reference state, usually the Hartree Fock
ground state, and T is the cluster operator for an N electron
system, defined by

T ¼ T1þT2þT3þ :::þTN ; ð5Þ

where

T1 ¼
X

pr

tr
pâwpâr ð6Þ

T2 ¼
X

pqrs

trs
pqâwpâwqârâs ð7Þ

and higher-order terms follow logically. It is clear that by
construction the operator (T$Tw) is anti-hermitian,
and exponentiation maps it to a unitary operator U ¼ eðT $TT Þ.
For any fixed excitation level k, the reduced cluster operator is

written as

TðkÞ ¼
Xk

i¼1

Ti: ð8Þ

In general no efficient implementation of this ansatz has yet been
developed for a classical computer, even for low-order cluster
operators, due to the non-truncation of the BCH series29.
However, this state may be prepared efficiently on a quantum
device. The reduced anti-hermitian cluster operator (T(k)$T(k)w)
is the sum of a polynomial number of terms—namely, it contains
a number of terms O(Nk(M$N)k), where M is the number of
single-particle orbitals. By defining an effective Hermitian
Hamiltonian H¼ i(T(k)$T(k)w) and performing the Jordan–
Wigner transformation to reach a Hamiltonian that acts on the
space of qubits, ~H, we are left with a Hamiltonian that is a sum of
polynomially many products of Pauli operators. The problem
then reduces to the quantum simulation of this effective
Hamiltonian, ~H, which can be done in polynomial time using
the procedure outlined by Ortiz et al.23 We note that while this
state preparation procedure utilizes tools from quantum
simulation, the total effective time of evolution is fixed by the
expansion coefficients trs

pq. This is in contrast to the normal
difficulties encountered in QPE, where simulations must be
carried out for times that are exponential in the desired bits of
precision.

While there is currently no known efficient classical algorithm
based on these ansatz states, non-unitary coupled cluster ansatz is
sometimes referred to as the ‘gold standard of quantum
chemistry’ as it is the standard of accuracy to which other
methods in quantum chemistry are often compared. The unitary
version of this ansatz is thought to yield superior results to even
this ‘gold standard’29.

Prototype demonstration. We have implemented the QPU using
integrated quantum photonics technology30. Our device, shown
schematically in Fig. 2, is a reconfigurable waveguide chip that
can prepare and measure arbitrary two-bit pure states using
several single-qubit rotations and one two-qubit entangling gate.
The state is path-encoded using photon pairs generated via a
spontaneous parametric downconversion process. State

QPU
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+
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Figure 1 | Architecture of the quantum-variational eigensolver. In QEE, quantum states that have been previously prepared are fed into the quantum
modules, which compute /HiS, where Hi is any given term in the sum defining H. The results are passed to the CPU, which computes /HS. In the
quantum variational eigensolver, the classical minimization algorithm, run on the CPU, takes /HS and determines the new state parameters, which are
then fed back to the QPU.
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Fig. 2 The Variational Quantum Eigensolver (VQE) implements the Rayleigh-Ritz variational principle. Gate 
operations on the QHW creates a quantum state in the QHW register, described in terms of a state vector. 
Repeated application of rotation (Pauli) operators and subsequent measurements (state tomography) produces 
a distribution of energies that that are used for calculating the expectation value of the Hamiltonian – the 
energy.  

 
Figure 3 exemplifies the VQE-method in the simple case of the H2 molecule [3]. 

 

 
 

Fig. 3. The VQE exemplified for H2 molecule. The fermionic operators in the Hamiltonian are transformed into 
products of Pauli operators that can operate on qubits while conserving the anticommutation rules (Jordan-

Wigner (JW); Bravyi-Kitaev (BK); Parity). The trial function |j(q)> is constructed through a sequence of 
parametrized 1q rotations and entangling 2q gates applied to a suitable initial reference state. The Unitary 
Coupled Cluster Singles and Doubles (UCCSD) approximation creates the trial function via double excitations 
from the Hartree-Fock (HF) mean-field reference state |01>, building-in electron pair-correlation effects. The 

UCCSD-generating quantum circuit is given by a CNOT, an Rz(q) rotation, and another CNOT. 
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Variational quantum eigensolver - VQE

Rayleigh-Ritz = VQE

from exponentially costly precompilation [33]. When
implemented using a unitary coupled cluster (UCC) ansatz,
VQE cannot be efficiently simulated classically, and
empirical evidence suggests that answers are accurate
enough to predict chemical rates [19–23]. Because VQE
only requires short state preparation and measurement
sequences, it has been suggested that classically intractable
computations might be possible using VQE without the
overhead of error correction [22,23]. Our experiments
substantiate this notion; the robustness of the VQE to
systematic device errors allows the experiment to achieve
chemical accuracy.
Our second experiment realizes the original algorithm

for the quantum simulation of chemistry, introduced in
Ref. [2]. This approach involves Trotterized simulation [34]
and the quantum phase estimation algorithm (PEA) [35].
We experimentally perform this entire algorithm, including
both key components, for the first time. While PEA has
asymptotically better scaling in terms of precision than
VQE, long and coherent gate sequences are required for its
accurate implementation.
The phase estimation component of the canonical

quantum chemistry algorithm has been demonstrated in
a photonic system [36], a nuclear magnetic resonance
system [37], and a nitrogen-vacancy center system [38].
While all three experiments obtained molecular energies to
incredibly high precision, none of the experiments imple-
mented the propagator in a scalable fashion (e.g., using
Trotterization), as doing so requires long coherent evolu-
tions. Furthermore, none of these experiments used more
than a single qubit or qutrit to represent the entire molecule.
This was possible due to the use of the configuration basis,
which is not scalable but renders the experimental chal-
lenge much easier. Furthermore, all of these implementa-
tions applied the logic gates with a single, totally controlled
pulse, as opposed to compiling the algorithm to a universal
set of gates as we do.
There have been two previous experimental demonstra-

tions of VQE, first in a photonic system [19] and later in an
ion trap [39]. Both experiments validated the variational
approach, and the latter implemented an ansatz based on
unitary coupled cluster. All prior experiments focused
on either molecular hydrogen [36,37] or helium hydride
[19,38,39], but none of these prior experiments employed a
scalable qubit representation such as second quantization.
Instead, all five prior experiments represent the Hamiltonian
in a configuration basis that cannot be efficiently decom-
posed as a sum of local Hamiltonians, and then exponentiate
this exponentially large matrix as a classical preprocessing
step [19,36–39].
Until this work, important aspects of scalable chemistry

simulation such as the Jordan-Wigner transformation [40]
or the Bravyi-Kitaev transformation [41,42] had never been
used to represent a molecule in an experiment; however,
prior experiments such as Ref. [7] have previously used the

Jordan-Wigner representation to simulate fermions on a
lattice. In both experiments presented here, we simulate the
dissociation of molecular hydrogen in the minimal basis
of Hartree-Fock orbitals, represented using the Bravyi-
Kitaev transformation of the second quantized molecular
Hamiltonian [17]. As shown in Appendix A, the molecular
hydrogen Hamiltonian can be scalably written as

H ¼ g01þ g1Z0 þ g2Z1 þ g3Z0Z1 þ g4Y0Y1 þ g5X0X1;

ð1Þ

where fXi; Zi; Yig denote Pauli matrices acting on the ith
qubit and the real scalars fgγg are efficiently computable
functions of the hydrogen-hydrogen bond length R.
The ground-state energy of Eq. (1) as a function of R

defines an energy surface. Such energy surfaces are used to
compute chemical reaction rates which are exponentially
sensitive to changes in energy. If accurate energy surfaces
are obtained, one can use established methods such as
classical Monte Carlo or molecular dynamics simulations
to obtain accurate free energies, which provide the rates
directly via the Erying equation [43]. At room temperature,
a relative error in energy of 1.6 × 10−3 hartree (1 kcal/mol
or 0.043 eV) translates to a chemical rate that differs
from the true value by an order of magnitude; therefore,
1.6 × 10−3 hartree is known as “chemical accuracy” [43].
Our goal, then, is to compute the lowest energy eigen-
values of Eq. (1) as a function of R, to within chemical
accuracy.

II. VARIATIONAL QUANTUM EIGENSOLVER

Many popular classical approximation methods for
the electronic structure problem involve optimizing a
parametrized guess wave function (known as an “ansatz”)
according to the variational principle [43]. If we para-
metrize an ansatz jφð~θÞi by the vector ~θ, then the variational
principle holds that

hφð~θÞjHjφð~θÞi
hφð~θÞjφð~θÞi

≥ E0; ð2Þ

where E0 is the smallest eigenvalue of the Hamiltonian H.
Accordingly, E0 can be estimated by selecting the param-
eters ~θ that minimize the left-hand side of Eq. (2).
While the ground-state wave function is likely to be in

superposition over an exponential number of states in the
basis of molecular orbitals, most classical approaches
restrict the ansatz to the support of polynomially many
basis elements due to memory limitations. However,
quantum circuits can prepare entangled states, which are
not known to be efficiently representable classically. In
VQE, the state jφð~θÞi is parametrized by the action of a
quantum circuit Uð~θÞ on an initial state jϕi; i.e.,
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jφð~θÞi≡Uð~θÞjϕi. Even if jϕi is a simple product state and
Uð~θÞ is a very shallow circuit, jφð~θÞi can contain complex
many-body correlations and span an exponential number of
standard basis states.
We can express the mapping Uð~θÞ as a concatenation

of parametrized quantum gates, U1ðθ1ÞU2ðθ2Þ…UnðθnÞ.
In this work, we parametrize our circuit according to
unitary coupled cluster theory [20,22,23]. As described
in Appendix D, unitary coupled cluster theory predicts that
the ground state of Eq. (1) can be expressed as

jφðθÞi ¼ e−iθX0Y1 j01i; ð3Þ

where jϕi ¼ j01i is the Hartree-Fock (mean-field) state
of molecular hydrogen in the representation of Eq. (1).
As discussed in Appendix D, unitary coupled cluster
theory is widely believed to be classically intractable and
is known to be strictly more powerful than the “gold
standard” of classical electronic structure theory, coupled
cluster theory [43–46]. The gate model circuit that
performs this unitary mapping is shown in the software
section of Fig. 1.
VQE solves for the parameter vector ~θ with a classical

optimization routine. One first prepares an initial ansatz
jφð~θ0Þi and then estimates the ansatz energy Eð~θ0Þ by
measuring the expectation values of each term in Eq. (1)
and summing these values together as

Eð~θÞ ¼
X

γ

gγhφð~θÞjHγjφð~θÞi; ð4Þ

where the gγ are scalars and the Hγ are local Hamiltonians

as in Eq. (1). The initial guess ~θ0 and the corresponding
objective value Eð~θ0Þ are then fed to a classical greedy
minimization routine (e.g., gradient descent), which then
suggests a new setting of the parameters ~θ1. The energy
Eð~θ1Þ is then measured and returned to the classical outer
loop. This continues for m iterations until the energy
converges to a minimum value Eð~θmÞ, which represents
the VQE approximation to E0.

Because our experiment requires only a single varia-
tional parameter, as in Eq. (3), we elect to scan 1000
different values of θ ∈ ½−π; πÞ in order to obtain expect-
ation values that define the entire potential energy curve.
We do this to simplify the classical feedback routine but at
the cost of needing slightly more experimental trials. These
expectation values are shown in Fig. 2(a) and the corre-
sponding energy surfaces at different bond lengths are
shown in Fig. 2(b). The energy surface in Fig. 2(b) is
locally optimized at each bond length to emulate an on-the-
fly implementation.
Figure 3(a) shows the exact and experimentally deter-

mined energies of molecular hydrogen at different bond
lengths. The minimum energy bond length (R ¼ 0.72 Å)
corresponds to the equilibrium bond length, whereas the
asymptote on the right-hand part of the curve corresponds
to dissociation into two hydrogen atoms. The energy
difference between these points is the dissociation energy,
and the exponential of this quantity determines the chemi-
cal dissociation rate. Our VQE experiment correctly pre-
dicts this quantity with an error of ð8% 5Þ × 10−4 hartree,
which is below the chemical accuracy threshold. Error bars

FIG. 1. Hardware and software schematic of the variational quantum eigensolver. (Hardware) micrograph shows two Xmon transmon
qubits and microwave pulse sequences to perform single-qubit rotations (thick lines), dc pulses for two-qubit entangling gates (dashed
lines), and microwave spectroscopy tones for qubit measurements (thin lines). (Software) quantum circuit diagram shows preparation of
the Hartree-Fock state, followed by application of the unitary coupled cluster ansatz in Eq. (3) and efficient partial tomography (Rt) to
measure the expectation values in Eq. (1). Finally, the total energy is computed according to Eq. (4) and provided to a classical optimizer
which suggests new parameters.
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frequency-tuning squid by a single JJ. This is also an important 
design for arrays of 3D transmon qubits where direct access 
for tuning individual qubits may be dif!cult or impossible.

The generic approach for coupling non-linear oscillators 
is to use electromagnetic driving !elds to induce parametric 
coupling with tunable strength by creating a spectrum of side-
bands bridging frequency gaps. In this way it is possible to 
entangle superconducting qubits with different frequencies 
using (i) !xed linear couplings, (ii) only microwave con-
trol signals, and (iii) tunable effective interaction strengths. 
Recently these methods have been applied experimentally 
through a variety of schemes based on two different princi-
ples: (i) driving qubits, and (ii) driving coupling resonators, 
e.g. a tunable bus.

6.5.1. Driving qubits.

Cross resonance (CR) 2q gates.  The CR scheme [255–
259] exploits already present nonlinearities to achieve tunable 
coupling, circumventing the need for nonlinear coupling ele-
ments. The CR two-qubit gate scheme irradiates one of the 
qubits at the transition frequency of the other qubit. In the 
presence of this cross-resonant microwave drive, an effec-
tive coupling emerges between the two qubits whose strength 
increases linearly with the ratio (drive amplitude)/(difference 
frequency).

The CR-coupling of two qubits, Q1 and Q2, can be under-
stood in the dressed state picture of quantum optics [255, 
256]. Under CR driving, the central transition at the irradia-
tion frequency of the driven dressed Q1 system is matched to 
the bare transition of the undriven Q2. One thus creates a reso-
nance between the central feature of the Mollow triplet on Q1 
and the bare transition of Q2. The tunability of the effective 
coupling strength G results from the evolution of the dressed 
Q1 eigenstates as the !eld amplitude F is adjusted [255, 256]:

Ĥeff = g(F) σz1 σx2, (53)

which is related to the CNOT gate by one additional local π/2 
rotation of each qubit.

In addition to the CR scheme, one approach is to create 
a microwave-activated conditional-phase gate (MAP) [260] 
based on driving the |03〉 and |12〉 transmon states into reso-
nance. A general problem with driving qubits is that the cou-
plings may depend sensitively on the qubit level structure. For 
transmon qubits the CR scheme is limited by the weak anhar-
monicity of the transmon, and the MAP scheme employs 
speci!c higher excited states of the transmon. These schemes 
may therefore be challenging to scale up to many qubits.

6.5.2. Driving a tunable bus. Attaching a SQUID to the end 
of a coplanar wave-guide resonator (CPW) makes it possible 
to vary the boundary condition (effective length) and cre-
ate a "ux-tunable resonator [261, 262] and to couple qubits 
[263, 264]. In [263], !xed-frequency qubits with different fre-
quencies were coupled by successively bringing each qubit 
quasi-statically in and out of resonance with the tunable CPW, 
effectively creating multi-qubit gates. In [261, 264], the CPW 
was rapidly tuned (chirped) to create interference and beating 
of microwave emission, which in principle could dynamically 
couple qubits [264]. Alternatively, one can drive the resonator 
at high frequency to create sideband structure and dynamic 
parametric coupling between qubits. This is presently at the 
focus of extensive and promising research [141, 221, 265–
267], potentially providing multi-qubit gate architectures for 
scaled-up systems. A recent proposal is based on the Dynami-
cal Casimir Effect [267]: A SQUID is then connected to the 
midpoint of a CPW resonator that is connected to transmon 
qubits at both ends, varying the coupling between the two 
halves by "ux tuning. Driving the SQUID at microwave fre-
quencies emits pair of photons that can entangle the qubits 
[267].

Resonator-induced phase gate (RIP). In the resonator-
induced phase gate (RIP) scheme [141, 221, 265] !xed-
frequency transmons are statically coupled to the same bus 
resonator driven at the difference frequency of two qubits.

In a two 2D-transmon setup [221], parametrically oscillat-
ing a "ux-tunable ‘bus qubit’ (similar to a combination of the 

Figure 13. Circuits for implementation of (a) CPHASE; (b) CNOT; (c) Ctrl-Z(θ), θ arbitrary; (d) basic circuit for phase estimation using an 
ancilla (top qubit); (e) the U = exp[−i θ2σz ⊗ σz] operator; (f) a controlled version of (e) for controlled time evolution and phase estimation 
(top qubit).
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with expectation value:

〈Ĥ〉 =
∑

iα

hiα〈σiα〉+
∑

iα,jβ

hiα,jβ〈σiασjβ〉+ .... (111)

The coef!cients are determined using a classical quantum 
chemistry package.

The expectation value of a tensor product 〈σiασjβσkγ .....〉 
of an arbitrary number of Pauli operators can be estimated 
by local measurement of each qubit [54], independent meas-
urements that can be performed in parallel. The advantage of 
this approach [456] is then that the coherence time to make 
a single measurement after preparing the state is O(1). The 
disadvantage relative to the PEA is that the scaling in the total 
number of operations as a function of the desired precision 
is quadratically worse [456]. The scaling will also re"ect the 
number of state preparation repetitions required, whereas in 
PEA the number of state preparation steps is constant.

In the end, however, the QEE dramatically reduces the 
coherence time requirement, while maintaining an exponen-
tial advantage over the classical case by adding only a polyno-
mial number of repetitions with respect to QPE [456].

10.1.2. Quantum variational eigensolver. The quantum vari-
ational eigensolver (QVE) [456] is based on the Ritz varia-
tional principle, !nding the minimum of the expectation value 
of the Hamiltonian under variation of the trial state function: 
(i) prepare the trial state |ψ〉; (ii) compute the Rayleigh–Ritz 
quotient 〈Hi〉 = 〈ψ|Ĥi|ψ〉/〈ψ||ψ〉 of all the terms in the Ham-
iltonian using the QEE as a subroutine; (iii) calculate 

∑
i 〈Hi〉; 

(iv) compare the resulting energy with the previous runs and 
feed back new parameters for the trial state. Note that the only 
step that is quantum is step (iii)—the other steps are prepared 
using a classical computer.

The issue now concerns state preparation. One example 
of a quantum state parameterised by a polynomial number 
of parameters for which there is no known ef!cient classical 
implementation is the unitary coupled cluster ansatz (UCC) 
[394, 456]

|ψ〉 = eT−T†
|ψref〉 (112)

where |ψref〉 is some reference state, usually the Hartree Fock 
ground state, and T is the cluster operator for an N electron 
system, de!ned by operators

T = T1 + T2 + T3 + .... + TN (113)

producing 1, 2, 3, ...., N  electron-hole pairs from the N-electron 
reference state. Explicity for T1 and T2:

T1 =
∑

pq

tpqc+p cq (114)

T2 =
∑

pqrs

tpqrsc+p c+q crcs (115)

The series in equations (114) and (115) generate in principle 
all possible con!gurations for FCI, producing all possible 
ground and excited state correlations.

In real molecules, often a limited number of these correla-
tions produce the bulk of the interaction energy due to the 

Coulomb repulsion. The problem is that to achieve the acc-
uracy needed for describing realistic molecular chemical 
energy surfaces and accurately predicting chemical reaction 
paths, a large number of small correlations are needed to build 
up to the !nal accurate result. This is QMA-hard, i.e. intrac-
table for both classical and quantum computers. It therefore 
becomes a question of useful approximations. Again, note 
here the recent work by Carleo and Troyer [363].

In the case of the two-electron H2 and He–H+ molecules, 
N = 2. The cluster operators are then limited to T1 and T2 in 
equation (112) and it is possible to apply the full machinery 
with suitable approximations and to obtain chemical accuracy.

10.1.3. H–H ground-state energy curve. We will now describe 
an experimental application of the QVE to the problem of the 
ground-state energy curve of the hydrogen molecule [38].

For a 2-electron system, the Hamiltonian reduces to

Ĥ =
∑

iα

hiα(R) σiα +
∑

iα,jβ

hiα,jβ(R) σiασjβ (116)

or equivalently

Ĥ = g01+ g1Z0 + g2Z1 + g3Z0Z1 + g4X0X1 + g5Y0Y1 (117)

where the set of parameters gi = gi(R) depends on the H–H 
distance and is obtained from the expectation values of the 
Hamiltonian terms evaluated on a classical computer using 
the basis (reference) states.

We discussed quantum state preparation in general in sec-
tion 9, and the coupled-cluster approach above. In the QVE, 
the state |ψ(θ)〉 is parameterised by the action of a quantum 
circuit Û(θ) on an initial state |ψref〉, i.e. |ψ(θ)〉 = Û(θ)|ψref〉. 
Even if |ψ(θ)〉 is a simple product state and Û(θ) is a very 
shallow circuit, |ψref〉 can contain complex many-body cor-
relations and span an exponential number of standard basis 
states.

The unitary coupled cluster approach states that the ground 
state of equation (112) can be expressed as

|ψ(θ)〉 = Û(θ)|ψHF〉 = e−iθX0Y1 |01〉 (118)

where |01〉 is the Hartree–Fock (mean-!eld) state of molecu-
lar hydrogen in the representation of equation (112). The gate 
model circuit that performs this unitary mapping is shown in 
the software section of !gure 29.

The total bonding energy curve in !gure 30 demonstrates 
chemical accuracy (better than 10−3 hartree), which is a very 
important result. In contrast, the calculation using the full 
canonical protocol of trotterisation plus quantum phase esti-
mation (PEA) turns out much less accurate, amply demon-
strating that the fully quantum approach is very demanding on 
coherence time.

10.1.4. He-H+ ground-state energy curve. The QVE was 
originally applied to the helium-hydride cation He–H+ prob-
lem on a 2-qubit photonic processor by Peruzzo et al [456] . 
Recently, Wang et al [473] applied the IPEA to the He–H+ 
problem using a solid-state quantum register realised in a 
nitrogen-vacancy centre (NVC) in diamond, reporting an 
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stochastic calculus concerns generalisation of the Langevin 
equation to quantum systems. Because of the relation to stochas-
tic processes one has adopted the term ‘stoquastic’ to refer to 
quantum Hamiltonians where all off-diagonal matrix elements 
in the standard basis are real and non-positive [401]. Stoquastic 
Hamiltonians are very common in physics. Among spin-1/2 
models, the well-studied ferromagnetic Heisenberg models and 
the quantum transverse Ising model [79] are stoquastic. Another 
example is a Heisenberg antiferromagnet on a cubic lattice.

Barends et  al chose to investigate a stoquastic frustrated 
Ising Hamiltonian having random local X and Z "elds, and 
random zz couplings. Non-stoquastic problems have addi-
tional random xx couplings. The results show that the system 
can "nd the ground states of both stoquastic and non-stoquas-
tic Hamiltonians with comparable performance.

9.6. Digital quantum simulation of fermionic models

Computational physics, chemistry and materials science deal 
with the structure and dynamics of electronic systems: atoms, 
molecules, solids, liquids, soft matter, etc. To describe these 
systems one needs the full machinery of quantum many-body 
theory involving fermionic and bosonic particles and exci-
tations. So far a we have been working with 2-level (spin) 
systems coupled to bosonic modes. However, to describe 
electronic systems, the fermionic anti-commutation rules have 
to be built in. One way to do this was invented a long time 
ago in the form of the Jordan–Wigner (JW) transformation 

[402]. One then works in the occupation-number representa-
tion and keeps track of parity under permutations via the the 
anti- commutation rules of a set of auxiliary Pauli σ operators 
embedded in the fermionic creation and annihilation opera-
tors. In this way the number of σ operators scales as O(n), i.e. 
as the number of qubits.

Bravyi and Kitaev [403] derived an alternative (BK) trans-
formation, using the qubits for storing parities rather than 
occupation numbers. This scheme also maps the fermionic 
operators on products of Pauli σ operators. One advantage, 
however, is that the number of σ operators scales as O(logn), 
which will be important for simulation of large systems that 
require large numbers of qubits.

These methods have been developed theoretically and 
simulated classically over the last 15 years [390, 404–409], 
but never explored experimentally, until now. The "rst exper-
imental applications ever, with superconducting circuits, 
have recently been published, implementing digital simula-
tion of the Fermi–Hubbard model [36] and the ground state 
binding curve of the hydrogen molecule, H2 [38] (see further 
section 10.1.4).

For illustration of the approach to an elementary fermonic 
many-body system, consider a closed-shell atom or molecule. 
The general second-quantised Hamiltonian is given by:

Ĥ =
∑

pq

hpqc+p cq +
1
2

∑

pqrs

hpqrsc+p c+q crcs

 
(96)

where the "rst term describes the single-particle kinetic and 
potential energies, and the second term the 2-body Coulomb 
interaction. The indices refer to the set of basis orbitals (fermi-
onic modes) used to expand the Hamiltonian.

The simplest possible case is the ground state of a 2-elec-
tron system with a minimal basis of 2 states: a He atom with 
1s ↑ 1s ↓, or a H2 molecule with 1σ ↑ 1σ ↓. The Hartree 
Hamiltonian is then given by:

Ĥ = h1c+1 c1 + h2c+2 c2 + V12c+1 c1c+2 c2 (97)

Figure 26. (a) Two-spin XY model: Circuit diagram implementing the ÛXY(t) gate for a certain time t = τ . (b) Two-spin Heisenberg 
(XYZ) model: Circuit diagram implementing the ÛXYZ(t) gate (equation (90)) for a certain time t = τ . (c) Time evolution ÛXY(t) of the 
two-spin XY model: Experimentally determined coordinates of the Bloch vectors. Red (Q1) and blue (Q2) points are compared to the ideal 
paths shown as dashed lines in the XY model. (d) describes the same thing for the Heisenberg (XYZ) model. Reproduced from [192].  
CC BY 3.0.

Figure 27. Protocol to decompose and simulate Ising XY spin 
dynamics in a homogeneous transverse magnetic "eld. Reproduced 
from [192]. CC BY 3.0.
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stochastic calculus concerns generalisation of the Langevin 
equation to quantum systems. Because of the relation to stochas-
tic processes one has adopted the term ‘stoquastic’ to refer to 
quantum Hamiltonians where all off-diagonal matrix elements 
in the standard basis are real and non-positive [401]. Stoquastic 
Hamiltonians are very common in physics. Among spin-1/2 
models, the well-studied ferromagnetic Heisenberg models and 
the quantum transverse Ising model [79] are stoquastic. Another 
example is a Heisenberg antiferromagnet on a cubic lattice.

Barends et  al chose to investigate a stoquastic frustrated 
Ising Hamiltonian having random local X and Z "elds, and 
random zz couplings. Non-stoquastic problems have addi-
tional random xx couplings. The results show that the system 
can "nd the ground states of both stoquastic and non-stoquas-
tic Hamiltonians with comparable performance.

9.6. Digital quantum simulation of fermionic models

Computational physics, chemistry and materials science deal 
with the structure and dynamics of electronic systems: atoms, 
molecules, solids, liquids, soft matter, etc. To describe these 
systems one needs the full machinery of quantum many-body 
theory involving fermionic and bosonic particles and exci-
tations. So far a we have been working with 2-level (spin) 
systems coupled to bosonic modes. However, to describe 
electronic systems, the fermionic anti-commutation rules have 
to be built in. One way to do this was invented a long time 
ago in the form of the Jordan–Wigner (JW) transformation 

[402]. One then works in the occupation-number representa-
tion and keeps track of parity under permutations via the the 
anti- commutation rules of a set of auxiliary Pauli σ operators 
embedded in the fermionic creation and annihilation opera-
tors. In this way the number of σ operators scales as O(n), i.e. 
as the number of qubits.

Bravyi and Kitaev [403] derived an alternative (BK) trans-
formation, using the qubits for storing parities rather than 
occupation numbers. This scheme also maps the fermionic 
operators on products of Pauli σ operators. One advantage, 
however, is that the number of σ operators scales as O(logn), 
which will be important for simulation of large systems that 
require large numbers of qubits.

These methods have been developed theoretically and 
simulated classically over the last 15 years [390, 404–409], 
but never explored experimentally, until now. The "rst exper-
imental applications ever, with superconducting circuits, 
have recently been published, implementing digital simula-
tion of the Fermi–Hubbard model [36] and the ground state 
binding curve of the hydrogen molecule, H2 [38] (see further 
section 10.1.4).

For illustration of the approach to an elementary fermonic 
many-body system, consider a closed-shell atom or molecule. 
The general second-quantised Hamiltonian is given by:

Ĥ =
∑

pq

hpqc+p cq +
1
2

∑

pqrs

hpqrsc+p c+q crcs

 
(96)

where the "rst term describes the single-particle kinetic and 
potential energies, and the second term the 2-body Coulomb 
interaction. The indices refer to the set of basis orbitals (fermi-
onic modes) used to expand the Hamiltonian.

The simplest possible case is the ground state of a 2-elec-
tron system with a minimal basis of 2 states: a He atom with 
1s ↑ 1s ↓, or a H2 molecule with 1σ ↑ 1σ ↓. The Hartree 
Hamiltonian is then given by:

Ĥ = h1c+1 c1 + h2c+2 c2 + V12c+1 c1c+2 c2 (97)

Figure 26. (a) Two-spin XY model: Circuit diagram implementing the ÛXY(t) gate for a certain time t = τ . (b) Two-spin Heisenberg 
(XYZ) model: Circuit diagram implementing the ÛXYZ(t) gate (equation (90)) for a certain time t = τ . (c) Time evolution ÛXY(t) of the 
two-spin XY model: Experimentally determined coordinates of the Bloch vectors. Red (Q1) and blue (Q2) points are compared to the ideal 
paths shown as dashed lines in the XY model. (d) describes the same thing for the Heisenberg (XYZ) model. Reproduced from [192].  
CC BY 3.0.

Figure 27. Protocol to decompose and simulate Ising XY spin 
dynamics in a homogeneous transverse magnetic "eld. Reproduced 
from [192]. CC BY 3.0.
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with expectation value:

〈Ĥ〉 =
∑

iα

hiα〈σiα〉+
∑

iα,jβ

hiα,jβ〈σiασjβ〉+ .... (111)

The coef!cients are determined using a classical quantum 
chemistry package.

The expectation value of a tensor product 〈σiασjβσkγ .....〉 
of an arbitrary number of Pauli operators can be estimated 
by local measurement of each qubit [54], independent meas-
urements that can be performed in parallel. The advantage of 
this approach [456] is then that the coherence time to make 
a single measurement after preparing the state is O(1). The 
disadvantage relative to the PEA is that the scaling in the total 
number of operations as a function of the desired precision 
is quadratically worse [456]. The scaling will also re"ect the 
number of state preparation repetitions required, whereas in 
PEA the number of state preparation steps is constant.

In the end, however, the QEE dramatically reduces the 
coherence time requirement, while maintaining an exponen-
tial advantage over the classical case by adding only a polyno-
mial number of repetitions with respect to QPE [456].

10.1.2. Quantum variational eigensolver. The quantum vari-
ational eigensolver (QVE) [456] is based on the Ritz varia-
tional principle, !nding the minimum of the expectation value 
of the Hamiltonian under variation of the trial state function: 
(i) prepare the trial state |ψ〉; (ii) compute the Rayleigh–Ritz 
quotient 〈Hi〉 = 〈ψ|Ĥi|ψ〉/〈ψ||ψ〉 of all the terms in the Ham-
iltonian using the QEE as a subroutine; (iii) calculate 

∑
i 〈Hi〉; 

(iv) compare the resulting energy with the previous runs and 
feed back new parameters for the trial state. Note that the only 
step that is quantum is step (iii)—the other steps are prepared 
using a classical computer.

The issue now concerns state preparation. One example 
of a quantum state parameterised by a polynomial number 
of parameters for which there is no known ef!cient classical 
implementation is the unitary coupled cluster ansatz (UCC) 
[394, 456]

|ψ〉 = eT−T†
|ψref〉 (112)

where |ψref〉 is some reference state, usually the Hartree Fock 
ground state, and T is the cluster operator for an N electron 
system, de!ned by operators

T = T1 + T2 + T3 + .... + TN (113)

producing 1, 2, 3, ...., N  electron-hole pairs from the N-electron 
reference state. Explicity for T1 and T2:

T1 =
∑

pq

tpqc+p cq (114)

T2 =
∑

pqrs

tpqrsc+p c+q crcs (115)

The series in equations (114) and (115) generate in principle 
all possible con!gurations for FCI, producing all possible 
ground and excited state correlations.

In real molecules, often a limited number of these correla-
tions produce the bulk of the interaction energy due to the 

Coulomb repulsion. The problem is that to achieve the acc-
uracy needed for describing realistic molecular chemical 
energy surfaces and accurately predicting chemical reaction 
paths, a large number of small correlations are needed to build 
up to the !nal accurate result. This is QMA-hard, i.e. intrac-
table for both classical and quantum computers. It therefore 
becomes a question of useful approximations. Again, note 
here the recent work by Carleo and Troyer [363].

In the case of the two-electron H2 and He–H+ molecules, 
N = 2. The cluster operators are then limited to T1 and T2 in 
equation (112) and it is possible to apply the full machinery 
with suitable approximations and to obtain chemical accuracy.

10.1.3. H–H ground-state energy curve. We will now describe 
an experimental application of the QVE to the problem of the 
ground-state energy curve of the hydrogen molecule [38].

For a 2-electron system, the Hamiltonian reduces to

Ĥ =
∑

iα

hiα(R) σiα +
∑

iα,jβ

hiα,jβ(R) σiασjβ (116)

or equivalently

Ĥ = g01+ g1Z0 + g2Z1 + g3Z0Z1 + g4X0X1 + g5Y0Y1 (117)

where the set of parameters gi = gi(R) depends on the H–H 
distance and is obtained from the expectation values of the 
Hamiltonian terms evaluated on a classical computer using 
the basis (reference) states.

We discussed quantum state preparation in general in sec-
tion 9, and the coupled-cluster approach above. In the QVE, 
the state |ψ(θ)〉 is parameterised by the action of a quantum 
circuit Û(θ) on an initial state |ψref〉, i.e. |ψ(θ)〉 = Û(θ)|ψref〉. 
Even if |ψ(θ)〉 is a simple product state and Û(θ) is a very 
shallow circuit, |ψref〉 can contain complex many-body cor-
relations and span an exponential number of standard basis 
states.

The unitary coupled cluster approach states that the ground 
state of equation (112) can be expressed as

|ψ(θ)〉 = Û(θ)|ψHF〉 = e−iθX0Y1 |01〉 (118)

where |01〉 is the Hartree–Fock (mean-!eld) state of molecu-
lar hydrogen in the representation of equation (112). The gate 
model circuit that performs this unitary mapping is shown in 
the software section of !gure 29.

The total bonding energy curve in !gure 30 demonstrates 
chemical accuracy (better than 10−3 hartree), which is a very 
important result. In contrast, the calculation using the full 
canonical protocol of trotterisation plus quantum phase esti-
mation (PEA) turns out much less accurate, amply demon-
strating that the fully quantum approach is very demanding on 
coherence time.

10.1.4. He-H+ ground-state energy curve. The QVE was 
originally applied to the helium-hydride cation He–H+ prob-
lem on a 2-qubit photonic processor by Peruzzo et al [456] . 
Recently, Wang et al [473] applied the IPEA to the He–H+ 
problem using a solid-state quantum register realised in a 
nitrogen-vacancy centre (NVC) in diamond, reporting an 
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|cS that minimizes

hc j H j ci
hc j ci : ð3Þ

By varying the experimental parameters in the preparation of
|cS and computing the Rayleigh–Ritz quotient using QEE as
a subroutine in a classical minimization, one may prepare
unknown eigenvectors. At the termination of the algorithm, a
simple prescription for the reconstruction of the eigenvector is
stored in the final set of experimental parameters that define |cS.

If a quantum state is characterized by an exponentially large
number of parameters, it cannot be prepared with a polynomial
number of operations. The set of efficiently preparable states are
therefore characterized by polynomially many parameters, and
we choose a particular set of ansatz states of this type. Under
these conditions, a classical search algorithm on the experimental
parameters that define |cS needs only explore a polynomial
number of dimensions—a requirement for the search to be
efficient. One example of a quantum state parameterized by a
polynomial number of parameters for which there is no known
efficient classical implementation is the unitary coupled cluster
ansatz29

j Ci ¼ eT $Tw j Firef : ð4Þ

where |FSref is some reference state, usually the Hartree Fock
ground state, and T is the cluster operator for an N electron
system, defined by

T ¼ T1þT2þT3þ :::þTN ; ð5Þ

where

T1 ¼
X

pr

tr
pâwpâr ð6Þ

T2 ¼
X

pqrs

trs
pqâwpâwqârâs ð7Þ

and higher-order terms follow logically. It is clear that by
construction the operator (T$Tw) is anti-hermitian,
and exponentiation maps it to a unitary operator U ¼ eðT $TT Þ.
For any fixed excitation level k, the reduced cluster operator is

written as

TðkÞ ¼
Xk

i¼1

Ti: ð8Þ

In general no efficient implementation of this ansatz has yet been
developed for a classical computer, even for low-order cluster
operators, due to the non-truncation of the BCH series29.
However, this state may be prepared efficiently on a quantum
device. The reduced anti-hermitian cluster operator (T(k)$T(k)w)
is the sum of a polynomial number of terms—namely, it contains
a number of terms O(Nk(M$N)k), where M is the number of
single-particle orbitals. By defining an effective Hermitian
Hamiltonian H¼ i(T(k)$T(k)w) and performing the Jordan–
Wigner transformation to reach a Hamiltonian that acts on the
space of qubits, ~H, we are left with a Hamiltonian that is a sum of
polynomially many products of Pauli operators. The problem
then reduces to the quantum simulation of this effective
Hamiltonian, ~H, which can be done in polynomial time using
the procedure outlined by Ortiz et al.23 We note that while this
state preparation procedure utilizes tools from quantum
simulation, the total effective time of evolution is fixed by the
expansion coefficients trs

pq. This is in contrast to the normal
difficulties encountered in QPE, where simulations must be
carried out for times that are exponential in the desired bits of
precision.

While there is currently no known efficient classical algorithm
based on these ansatz states, non-unitary coupled cluster ansatz is
sometimes referred to as the ‘gold standard of quantum
chemistry’ as it is the standard of accuracy to which other
methods in quantum chemistry are often compared. The unitary
version of this ansatz is thought to yield superior results to even
this ‘gold standard’29.

Prototype demonstration. We have implemented the QPU using
integrated quantum photonics technology30. Our device, shown
schematically in Fig. 2, is a reconfigurable waveguide chip that
can prepare and measure arbitrary two-bit pure states using
several single-qubit rotations and one two-qubit entangling gate.
The state is path-encoded using photon pairs generated via a
spontaneous parametric downconversion process. State

QPU
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Adjust the parameters for the next input state

Figure 1 | Architecture of the quantum-variational eigensolver. In QEE, quantum states that have been previously prepared are fed into the quantum
modules, which compute /HiS, where Hi is any given term in the sum defining H. The results are passed to the CPU, which computes /HS. In the
quantum variational eigensolver, the classical minimization algorithm, run on the CPU, takes /HS and determines the new state parameters, which are
then fed back to the QPU.
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will explore implementations of this algorithm on the OpenSuperQ platform in combination with DMFT (Y1) and apply it to 
molecular materials. (Y2) 

USAAR in the process of adapting its existing methodology of variational cluster algorithms on a 
quantum computer – which are a generalization of DMFT – to concrete examples and for applications 
in concrete hardware. USAAR has also developed a roadmap to simulate systems capable of the 
fractional quantum Hall effect on quantum computers. See Deliverable 1.10 for details. FZJ plans 
solving the Hubbard model with JUQCS. 
 
 
Task 1.2 Benchmarking use-cases for machine learning and optimization 
 
1.2.1: Machine learning and AI applications: 

DoA: CHALMERS and UPV/ EHU will develop and benchmark QAOA use-cases on classical computers (i) to explore the 
performance of different number of steps in the QAOA and (ii) to investigate the scaling properties of the chosen use-cases, 
for an error free implementation, as well as for realistic error models from the hardware-based model (1.3.1). The result 
will be an optimized gate sequence that will be run by the experimental partners on the OpenSuperQ HW, as well as a 
report analyzing the quantum advantage in the cases considered. 

Flight Optimization using QAOA 

In collaboration with the Boeing subsidiary Jeppesen, CHALMERS has investigated the performance 
of the Quantum Approximate Optimization Algorithm (QAOA) for optimizing small but realistic 
instances derived from real world data of logistic scheduling relevant to airlines. Airlines today are 
faced with a number of large scale scheduling problems. One such problem is the tail assignment 
problem, which is the task of assigning individual aircraft (identified by the number on its tail fin) to a 
given set of flights, minimizing the overall cost.  

The QAOA is a variational hybrid quantum-classical algorithm recently introduced and likely to run on 
near-term quantum devices.  

 

FIGure 2:  Schematic representation of the QAOA. The quantum processor prepares the variational state, 
depending on variational parameters. The variational parameters (⃗γ, β⃗) are optimized in a closed loop using a 
classical optimizer.  

Jeppesen reduced real instances obtained from their customers to instances with 8, 15 and 25 
decision variables, which can be run on a quantum computer with 8, 15 and 25 qubits respectively. 
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FIG. 1. Schematic representation of the QAOA. The quan-
tum processor prepares the variational state, depending on
variational parameters. The variational parameters (~�, ~�) are
optimized in a closed loop using a classical optimizer.

where ĤC is the cost Hamiltonian given by Eq. (8), and
ĤM ⌘

P
n

i=1 �̂
x

i
is a so called mixing Hamiltonian. The

alternating sequence continues for a total of p times with
di↵erent variational parameters ~� = (�1, . . . , �p) with

�i 2 [0, 2⇡] if ĤC has integer-valued eigenvalues, and
~� = (�1, . . . ,�p) with �i 2 [0,⇡], such that the final vari-
ational state obtained is:

| p(~�, ~�)i ⌘ V̂ (�p)Û(�p) . . . V̂ (�1)Û(�1) |+i⌦n
. (17)

The parametrized quantum gates are then optimized in
a closed loop using a classical optimizer, see Fig. 1. The
objective of the classical optimizer is to find the opti-
mal variational parameters that minimize the expecta-
tion value of the cost Hamiltonian

(~�⇤, ~�⇤) = argmin
~�,~�

Ep(~�, ~�), (18)

where

Ep(~�, ~�) ⌘ h p(~�, ~�)|ĤC | p(~�, ~�)i . (19)

Note that this requires in principle multiple state prepa-
rations and measurements. Once the best possible varia-
tional parameters are found, they are used to create the
state | p(~�⇤, ~�⇤)i, using the quantum processor for the
state preparation. Then, one samples from this state by
measuring in the computational basis, and the cost of
the configuration obtained in the measurement, given by
Eq. (8), is evaluated. The latter step is classically e�-
cient.

The success probability is defined as the probability
of finding the qubits in their ground state configuration
|xsoli when performing a single shot measurement of the

| p(~�, ~�)i state, i.e.

Fp(~�, ~�) ⌘ | hxsol| p(~�, ~�)i |2, (20)

where xsol = x1x2 . . . xn is the bit string corresponding to
the solution. Given this success probability we can ask:
what is the probability of having observed the solution at
least once after m repeated measurements? The answer
is given by:

1� (1� Fp(~�, ~�))
m
. (21)

Thus to have the probability (1 � ") of observing the
solution, m has to be

m >
log "

log (1� Fp(~�, ~�))
. (22)

To fix the ideas, consider a fair coin. In order to have a
probability higher than 99.9 % of observing Head at least
once, one has to flip and “measure” the coin 10 times.

In what follows, we are going to apply this paradigm to
solve the Exact Cover problem, by using the correspond-
ing cost Hamiltonian, expressed by Eq. (8) with Jij and
hi given by Eq. (12) and (13) respectively.

IV. RESULTS

We will examine instances for three di↵erent problem
sizes of the tail assignment problem given in Table I, cor-
responding to 8, 15 and 25 routes. As clear from Eq. (8),
this requires quantum processors with 8, 15 and 25 qubits
respectively.

TABLE I. Information about the problem instances.

Routes Flights No. of instances No. of sol. per instance
8 77 10 1
15 77 9 1
25 278 10 1

A. Energy landscape

Firstly, we can reduce the search space by noting that
the eigenvalues of both Hamiltonians ĤC and ĤM are
integer-valued. As a consequence, the expectation value
Eq. (19) has even-symmetry, i.e. Ep(~�, ~�) = Ep(�~�,�~�).
This symmetry allow us to restrict the domain of each �i
to �i 2 [0,⇡].

To highlight the di�culty of finding the best varia-
tional parameters we can visualize the landscape of the
expectation value E1(�,�), as well as the corresponding
success probability F1(�,�), as a function of � and �, for
p = 1, by evaluating them on a fine grid [0,⇡] ⇥ [0,⇡].
Fig. 2 shows the simulation result for one of the 25 route
instances. The variational parameters resulting in the
lowest expectation value, (�exp,�exp), and those result-
ing in the highest success probability, (�succ,�succ), are
approximately the same. In fact |�exp � �succ| ' 0 and
|�exp��succ| ' 0.047. Note that this is not obvious, since
QAOA only minimizes the expectation value, and does
not explicitly maximize the success probability; a low
expectation value does not necessarily translates onto a
high success probability. For example, consider a vari-
ational state that is a linear combination of low energy
excited eigenstates of the cost Hamiltonian. This state
could potentially have a low expectation value while the

HPCQC
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This means that the implementation of gate sequences can be, and has been, done at �,�>D�Z^͛ 
HPC as well as at FZJ. Therefore, as far as QChem is concerned, there is no need for transferring 

quantum circuit gate lists to FZJ. Instead we specify instances to be run at different workstations and 

HPC for comparison.  

2 Description of Activities 

2.1 Introduction 

During the first 12 months CHALMERS focused on training activities, learning QISKit and reproducing 

the ground state energies of H2, LiH, BeH2, Li2 and H2O single molecules with minimal basis sets. 

During months 12-18 CHALMERS has concentrated on the central OSQ objectives: ground state 

energies of single molecules of water (H2O) and hydrogen cyanide (HCN), as well as of the nitrogen 

(N2) molecule. Through interaction with IBMZ, Chalmers got access to upgraded QISKit code [4] 

implementing state-of-the-art reduction of qubit and gate resources. This now makes it possible to 

work with water clusters and HCN derivatives in useful applications executed on HPC quantum 

simulators.� 

2.2 Methodology 

At CHALMERS we have implemented the Python-based QISKit-aqua-chemistry software package 

[5,6] on local workstations and on the C3SE HPC at CHALMERS, setting up and performing ground-

state calculations for water (H2O) and hydrogen cyanide (HCN) using the Variational Quantum 

Eigensolver (VQE) [8]:  

(i) Constructing the Hamiltonian and a parametrized trial wave function;  

(ii) Evaluating the expectation value (energy) of the Hamiltonian;  

(iii) Updating the parameters to minimise the energy.  

The first and third are performed on a classical computer, while the second /step (2) is performed on 

a quantum computer (real or simulated).  

 

The Variational Quantum Eigensolver (VQE) implements the Rayleigh-Ritz variational principle: 

 

       
 

The VQE is a classical-quantum hybrid algorithm where the trial function _\�T�! is created in the 

qubit register by gate operations. In a fully quantum HW calculation of the expectation value, the 

energy is estimated via quantum state tomography of each of the Pauli operator products of Hi. In 

quantum simulations on an HPC, the state vector is available classically, and the expectation value of 

H can be evaluated directly. The VQE scales badly for large molecules (due to repeated 

measurements/tomography to form the expectation value of the Hamiltonian, <H>. Nevertheless, 

the VQE is the common approach for small molecules with present NISQ HW. The phase-estimation 

algorithm (PEA) scales better, but involves much deeper circuits, and puts much higher demands on 

the coherence time of the q-register. 

 
The main steps in our VQE calculations are as follows: 

We start from a unitary coupled cluster (UCC) ansatz of the quantum state _\�T�!�with variational 

parameter T��

HPCQC

Quantum variational methods

Quantum Variational Eigensolver (VQE) Quantum Approximate Optimization
Algorithm (QAOA)

2 sides of the same coin
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We illustrate the VQE in some detail by showing how it works for the 2-electron hydrogen molecule. 
The fermionic operators in the Hamiltonian  
 

 
are transformed into products of Pauli operators that can operate on qubits while conserving the 
anticommutation rules  
 

 
or explicitly (renaming the Pauli operators):  
 

 
 
The electron correlation part is particularly simple because there are no exchange terms.  
 
The UCCSD approximation creates the trial function via double excitations from the Hartree-Fock 
(HF) mean-field reference state |01>, building-in electron pair-correlation effects.  

 
 
The Hartree-Fock reference state |01> is created through a bit flip operation:  X0|00> -->>|01>. The 
core of the UCCSD-generating quantum circuit is given by a CNOT, a parametrised Rz(T) rotation, and 
another CNOT (Fig.2(a)), generating the unitary operator in Fig.2(b): 
 

                        
 
Figure 2:         (a)        (b)     
 
The desired form in the UCCSD ansatz for _\�T�!�is obtained by additional 1q Pauli rotation gates (Fig. 
3): 
 

         
 
 Figure 3. The Variational Quantum Eigensolver (VQE) for H2 (adapted from [9]).  
 
Fig. 3 describes the measurement approach, needed for experimental implementations. However, 
since we are simulating the ideal quantum HW on an HPC, the required gate list to describe the 
quantum state vector does not involve the tomographic Rt gates and the final measurements. The 
expectation value <H> is evaluated directly via matrix operations. 
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molecules, like nitrogen, N2. Computing the ground state energy of N2 with 12 qubits and a few thousand 2-qubit gates should
be possible in the near future with NISQ hardware (HW).

The case of HCN is a bit more challenging for real HW, currently needing 15 qubits and 33 000 2-qubit gates already with a
minimal basis set. However, the number of gates and time-to-solution can certainly be reduced with lower demands for accuracy.
This may be useful for exploring larger systems and approximate implementations on physical HW. Note that minimal basis sets
are of no interest if one wants to challenge modern quantum chemistry. In the case of H2O, the present work demonstrates that a
better basis set (Pople 6-31G) requires 20 qubits. For HCN, the 6-31G basis set increases the number of qubits to 33, with 3000
variational parameters and over 600000 gates. This quantum simulation cannot be handled by any high-performance computer
(HPC) today. This is remarkable in the light of that an HPC can easily solve the same problem using modern quantum chemistry
methods.

II. METHODS

We have implemented the Python-based Qiskit software package [9, 10] on local workstations and clusters, setting up and
performing ground-state calculations for water (H2O) and hydrogen cyanide (HCN), as well as for several related molecules and
radicals, using the Variational Quantum Eigensolver (VQE) [11]: (1) Constructing the Hamiltonian Ĥ and a parametrized trial
wave function |y(q)i; (2) Evaluating the energy E of the state |y(q)i, i.e. the expectation value of the Hamiltonian Ĥ; (3)
Updating the parameters q = (q1,q2, . . . ,qm) to minimise the energy E. The first and third steps are performed on a classical
computer, while the second step is performed on a simulated QC.

The Variational Quantum Eigensolver (VQE) implements the Rayleigh-Ritz variational principle for analysing the energy E
for a quatum state |yi with respect to the ground state energy E0 of a given Hamiltonian Ĥ:

E = hy|Ĥ|yi � E0; Ĥ = Â
i

Ĥi (1)

The VQE is a classical-quantum hybrid algorithm where the trial function |yi is created in the qubit register by gate operations.
In a fully quantum HW calculation of the expectation value, the energy is estimated via quantum state tomography of each of the
Pauli operator products of Ĥi. In quantum simulations on an HPC, the state vector is available classically, and the expectation
value of H can be evaluated directly. The VQE scales poorly for large molecules due to repeated measurements/tomography
to form the expectation value of the Hamiltonian terms, hy|Ĥi|yi. Nevertheless, the VQE is the common approach for small
molecules with present NISQ HW. The phase-estimation algorithm (PEA) scales better, but involves much deeper circuits, and
puts much higher demands on the coherence time of the quantum register [3, 4].

The main steps in our VQE calculations are in principle as follows: We start from a unitary coupled cluster (UCC) ansatz of
the quantum state |yi with variational parameter |qi:

|y(q)i= Û(q)
��yre f

↵
= eT (q)�T (q)† ��yre f

↵
(2)

where
��yre f

↵
is, in our approach, the Hartree-Fock (HF) ground state. The ansatz can be expanded:

T (q) = T1 +T2 +T3 + ....+TN (3)

producing 1,2,3, ....,N electron-hole pairs from the N-electron reference state. Explicitly, for T1 and T2:

T1 = Â
pq

t(q)pq c+p cq; T2 = Â
pqrs

t(q)pqrs c+p c+q crcs (4)

with c+i and ci, fermionic creation and annihilation operators, respectively. The series of terms generates in principle all possible
configurations for FCI, producing all possible ground and excited state correlations. The terms shown generate single (S)
and double (D) excitations and produce the parametrized UCCSD trial-state approximation that we are using. In particular
t(q)pq = qi and t(q)pqrs = q j for all combinations of the indices pqrs.

The UCCSD trial-function |y(q)i with fermionic operators must now be mapped onto qubit spin operators. Common trans-
formations are the Jordan-Wigner (JW), Bravyi-Kitaev (BK) and Parity encodings, all designed to impose the anticommutation
rules. The original UCCSD exponential is then expanded into exponentials of large numbers of products of Paul spin-operators
acting on qubits. The parametrized initial trial state is finally constructed through entangled quantum circuits: combinations of
parametrized single-qubit rotation gates and entangling CNOT gates (Fig. 1). All this results in a state vector |y(q)i for the trial
state.

3

FIG. 1: Quantum circuits for operator exponentiation: (a) e�iqs1zs2z ; (b) e�iqs1zs2zs3z

The fermionic operators c+i and ci in the molecular Hamiltonian

Ĥ = Â
pq

hpqc+p cq +
1
2 Â

pqrs
hpqrsc+p c+q crcs (5)

must also be expanded in products of Pauli spin-operators using one transformation of the listed above, namely JW, BK and
Parity, resulting in the generic interaction form:

Ĥ = Â
ia

hia sia + Â
ia, jb

hia, jb sia s jb + Â
ia, jb ,kg

hia, jb ,kg sia s jb skg + ....... (6)

where sia corresponds to the Pauli matrix sa for a 2 {0,x,y,z}, acting on the i-th qubit.
In practice, we start from a classical HF description and remove states that have the wrong spin and do not conserve the

number of electrons (tapering, Z2-symmetry [9, 10]). After fermion-to-spin operator Parity mapping we then Trotterize the
UCC-operator (Eq. 2).

The expectation value of the Hamiltonian Âi Ĥi can then be calculated in two ways: (1) State-vector approach: direct calcu-
lation of Âi hy|Ĥi|yi by matrix operations (Qiskit state-vector backend); (2) Measurement approach: generating an ensemble
of identical trial states and measuring the Pauli operators of the Hamiltonian terms Ĥi (QASM backend; or experimental q-HW
backends).

As a simplest possible example, in the case of the 2-electron hydrogen molecule (i = 1,2), one gets:

Ĥ = g01+g1s10 +g2s20 +g3s10s20 +g4s1xs2x +g5s1ys2y (7)

where g1 �g5 are coefficients describing the weights of the terms in the transformed Hamiltonian. The UCCSD approximation
creates the trial function via double excitations from the Hartree-Fock (HF) mean-field reference state |01>, building-in electron
pair-correlation effects:

|y(q)i= Û(q)
��yre f

↵
= e�iqs1xs2y |01i (8)

The Hartree-Fock reference state |01> is created through a bit flip operation: s1z|00i! |01i. The UCCSD-generating quantum
circuit is given by a CNOT, a parametrized Rz(q) rotation, and another CNOT, generating the unitary operator in Fig. 1(a). The
desired form in the UCCSD ansatz for |y(q)i in Eq. 2 is obtained by additional single-qubit rotation gates. In general, for
systems with more that 2 electrons, the ansatz and the Hamiltonian will involve products with operators involving more than two
qubits. A product of 3 operators is shown in Fig. 1(b) and is generalized to exponents with tensor products of Pauli operators for
n qubits, which generates quantum circuits with n-qubit operations.

In the H2-case there is only one single variational parameter, and the optimization of the energy is trivial. For larger molecules,
the number of UCCSD variational parameters can be very large (see Tables I-IV), and the optimization loop becomes classically
intractable.

In summary, our practical approach is as follows:

• Basic program package: VQE implemented by Qiskit Aqua [9].

• Initial/reference state: Hartree-Fock (HF) provided by PySCF.

• HF wave-functions calculated in general with a Pople minimal orbital basis STO-6G. However, to achieve higher accuracy,
in several cases we used 6-31G, and in a few cases 6-31+G* and 6-31++G*. Those basis sets give better accuracy, but
also require a much greater number of qubits.

• Variational ansatz: Trotterized Unitary Coupled Cluster Singles and Doubles (UCCSD). We have chosen to systematically
use the UCCSD, rather than experimenting with "hardware-efficient" trial functions [12]. UCCSD represents a funda-
mental QChem benchmark, providing a systematic approximation of many-electron correlations beyond the Hartree-Fock
mean-field level. In our view, the UCCSD is an important starting point for developing HW-efficient approaches.

with expectation value:

< Ĥ > =
X

i↵

hi↵ < �i↵ > +
X

i↵,j�

hi↵,j� < �i↵�j� > +.... (93)

The coe�cients are determined using a classical quantum chemistry package.

The expectation value of a tensor product < �i↵�j��k�..... > of an arbitrary number

of Pauli operators can be estimated by local measurement of each qubit [?], independent

measurements that can be performed in parallel. The advantage of this approach [?] is

then that the coherence time to make a single measurement after preparing the state is

O(1). The disadvantage relative to the PEA is that the scaling in the total number of

operations as a function of the desired precision is quadratically worse [?]. The scaling

will also reflect the number of state preparation repetitions required, whereas in PEA

the number of state preparation steps is constant.

In the end, however, the QEE dramatically reduces the coherence time requirement,

while maintaining an exponential advantage over the classical case by adding only a

polynomial number of repetitions with respect to QPE [?].

2.0.1. Quantum variational eigensolver The quantum variational eigensolver (QVE)

[?] is based on the Ritz variational principle, finding the minimum of the expectation

value of the Hamiltonian under variation of the trial state function: (i) prepare the trial

state | i; (ii) compute the Rayleigh-Ritz quotient < Hi >= h |Ĥi| i/h || i of all the
terms in the Hamiltonian using the QEE as a subroutine; (iii) calculate

P
i i >; (iv)

compare the resulting energy with the previous runs and feed back new parameters for

the trial state. Note that the only step that is quantum is step (iii) - the other steps

are prepared using a classical computer.

E = h |Ĥ| i/h || i � E0; Ĥ =
P

i Ĥi

x

E(✓) = h (✓)|Ĥ| (✓)i � E0; Ĥ =
P

i Ĥi

x

| (✓)i = eT (✓)�T (✓)† | refi (94)

x

| i = eT�T
† | refi (95)

x

T (✓) = T1 + T2 + T3 + ....+ TN (96)
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The series of terms generates in principle all possible configurations for FCI, producing all possible 
ground and excited state correlations. The terms shown generate single (S) and double (D) excitations 
and gives the parametrised UCCSD trial-state approximation that we are using. The coefficients tpq and 
tpqrs are variational parameters determining the weight of the excited configuration. 
 
The UCCSD trial-state with fermionic operators must now be mapped onto qubit spin operators. 
Common transformations are Jordan-Wigner (JW), Bravyi-Kitaev (BK) and Parity, all designed to 
impose the anticommutation rules. The original UCCSD exponential is then expanded into exponentials 
of large numbers of products of Paul pin-operators acting on qubits. The parametrised initial trial state 
is then constructed through entangled quantum circuits: combinations of parametrised 1q-rotation 
gates and entangling CNOT gates. The size of the quantum circuit can finally be reduced by qubit 
reduction schemes and qubit tapering [7]. All this results in a state vector for the trial state. 
 
The fermionic operators in the Hamiltonian must also be expanded in products of Pauli spin-operators. 
The expectation value can then be calculated in two ways: (1) State-vector approach: direct calculation 
of <∑Hi> by matrix operations (QISKit state-vector backend); (2) Measurement approach: generating 
an ensemble of identical trial states and measuring the Pauli operators of the Hamiltonian terms Hi 
(Fig.1) (QISKit qasm HPC backend; or experimental q-HW backends).   
 

       
(a)             (b) 

Figure 1: The Variational Quantum Eigensolver (VQE) (1(a) [8]; 1(b) [Aspuru-Guzik et al.]). Figure 1(b) emphasises 
that there are two loops for updating the variational parameters: (i) an “internal” loop that optimises the 
variational (UCCSD) ansatz, and (ii) an “external” loop that minimises the energy. 
 
The QISKit gate lists involve the general parametrised Pauli operators for 1q-operations plus CNOT 
(controlled-X, cx), forming a universal set of quantum gate operations (see the Appendix).  
 
We illustrate the VQE in some detail by showing how it works for the 2-electron hydrogen molecule. 
The fermionic operators in the Hamiltonian  
 

 
are transformed into products of Pauli operators that can operate on qubits while conserving the 
anticommutation rules  
 

 
or explicitly (renaming the Pauli operators):  
 

x

producing 1, 2, 3, ...., N electron-hole pairs from the N-electron reference state. Explicity

for T1 and T2: x

T1 =
X

pq

t(✓)pqc
+
p
cq; T2 =

X

pqrs

t(✓)pqrsc
+
p
c+
q
crcs (97)

x

T1 =
X

pq

tpqc
+
p
cq; T2 =

X

pqrs

tpqrsc
+
p
c+
q
crcs (98)

x

Ĥ =
X

i↵

hi↵(R) �i↵ +
X

i↵,j�

hi↵,j�(R) �i↵�j� (99)

x

Ĥ = g01+ g1Z0 + g2Z1 + g3Z0Z1 + g4X0X1 + g5Y0Y1 (100)
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|cS that minimizes

hc j H j ci
hc j ci : ð3Þ

By varying the experimental parameters in the preparation of
|cS and computing the Rayleigh–Ritz quotient using QEE as
a subroutine in a classical minimization, one may prepare
unknown eigenvectors. At the termination of the algorithm, a
simple prescription for the reconstruction of the eigenvector is
stored in the final set of experimental parameters that define |cS.

If a quantum state is characterized by an exponentially large
number of parameters, it cannot be prepared with a polynomial
number of operations. The set of efficiently preparable states are
therefore characterized by polynomially many parameters, and
we choose a particular set of ansatz states of this type. Under
these conditions, a classical search algorithm on the experimental
parameters that define |cS needs only explore a polynomial
number of dimensions—a requirement for the search to be
efficient. One example of a quantum state parameterized by a
polynomial number of parameters for which there is no known
efficient classical implementation is the unitary coupled cluster
ansatz29

j Ci ¼ eT $Tw j Firef : ð4Þ

where |FSref is some reference state, usually the Hartree Fock
ground state, and T is the cluster operator for an N electron
system, defined by

T ¼ T1þT2þT3þ :::þTN ; ð5Þ

where

T1 ¼
X

pr

tr
pâwpâr ð6Þ

T2 ¼
X

pqrs

trs
pqâwpâwqârâs ð7Þ

and higher-order terms follow logically. It is clear that by
construction the operator (T$Tw) is anti-hermitian,
and exponentiation maps it to a unitary operator U ¼ eðT $TT Þ.
For any fixed excitation level k, the reduced cluster operator is

written as

TðkÞ ¼
Xk

i¼1

Ti: ð8Þ

In general no efficient implementation of this ansatz has yet been
developed for a classical computer, even for low-order cluster
operators, due to the non-truncation of the BCH series29.
However, this state may be prepared efficiently on a quantum
device. The reduced anti-hermitian cluster operator (T(k)$T(k)w)
is the sum of a polynomial number of terms—namely, it contains
a number of terms O(Nk(M$N)k), where M is the number of
single-particle orbitals. By defining an effective Hermitian
Hamiltonian H¼ i(T(k)$T(k)w) and performing the Jordan–
Wigner transformation to reach a Hamiltonian that acts on the
space of qubits, ~H, we are left with a Hamiltonian that is a sum of
polynomially many products of Pauli operators. The problem
then reduces to the quantum simulation of this effective
Hamiltonian, ~H, which can be done in polynomial time using
the procedure outlined by Ortiz et al.23 We note that while this
state preparation procedure utilizes tools from quantum
simulation, the total effective time of evolution is fixed by the
expansion coefficients trs

pq. This is in contrast to the normal
difficulties encountered in QPE, where simulations must be
carried out for times that are exponential in the desired bits of
precision.

While there is currently no known efficient classical algorithm
based on these ansatz states, non-unitary coupled cluster ansatz is
sometimes referred to as the ‘gold standard of quantum
chemistry’ as it is the standard of accuracy to which other
methods in quantum chemistry are often compared. The unitary
version of this ansatz is thought to yield superior results to even
this ‘gold standard’29.

Prototype demonstration. We have implemented the QPU using
integrated quantum photonics technology30. Our device, shown
schematically in Fig. 2, is a reconfigurable waveguide chip that
can prepare and measure arbitrary two-bit pure states using
several single-qubit rotations and one two-qubit entangling gate.
The state is path-encoded using photon pairs generated via a
spontaneous parametric downconversion process. State

QPU

〈H1〉

〈H2〉

〈H3〉

〈HN〉

〈H1〉
+

+

+

+

〈H2〉

〈H3〉

〈HN〉
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Adjust the parameters for the next input state

Figure 1 | Architecture of the quantum-variational eigensolver. In QEE, quantum states that have been previously prepared are fed into the quantum
modules, which compute /HiS, where Hi is any given term in the sum defining H. The results are passed to the CPU, which computes /HS. In the
quantum variational eigensolver, the classical minimization algorithm, run on the CPU, takes /HS and determines the new state parameters, which are
then fed back to the QPU.
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Fig. 2 The Variational Quantum Eigensolver (VQE) implements the Rayleigh-Ritz variational principle. Gate 
operations on the QHW creates a quantum state in the QHW register, described in terms of a state vector. 
Repeated application of rotation (Pauli) operators and subsequent measurements (state tomography) produces 
a distribution of energies that that are used for calculating the expectation value of the Hamiltonian – the 
energy.  

 
Figure 3 exemplifies the VQE-method in the simple case of the H2 molecule [3]. 

 

 
 

Fig. 3. The VQE exemplified for H2 molecule. The fermionic operators in the Hamiltonian are transformed into 
products of Pauli operators that can operate on qubits while conserving the anticommutation rules (Jordan-

Wigner (JW); Bravyi-Kitaev (BK); Parity). The trial function |j(q)> is constructed through a sequence of 
parametrized 1q rotations and entangling 2q gates applied to a suitable initial reference state. The Unitary 
Coupled Cluster Singles and Doubles (UCCSD) approximation creates the trial function via double excitations 
from the Hartree-Fock (HF) mean-field reference state |01>, building-in electron pair-correlation effects. The 

UCCSD-generating quantum circuit is given by a CNOT, an Rz(q) rotation, and another CNOT. 
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Rayleigh-Ritz = VQE

from exponentially costly precompilation [33]. When
implemented using a unitary coupled cluster (UCC) ansatz,
VQE cannot be efficiently simulated classically, and
empirical evidence suggests that answers are accurate
enough to predict chemical rates [19–23]. Because VQE
only requires short state preparation and measurement
sequences, it has been suggested that classically intractable
computations might be possible using VQE without the
overhead of error correction [22,23]. Our experiments
substantiate this notion; the robustness of the VQE to
systematic device errors allows the experiment to achieve
chemical accuracy.
Our second experiment realizes the original algorithm

for the quantum simulation of chemistry, introduced in
Ref. [2]. This approach involves Trotterized simulation [34]
and the quantum phase estimation algorithm (PEA) [35].
We experimentally perform this entire algorithm, including
both key components, for the first time. While PEA has
asymptotically better scaling in terms of precision than
VQE, long and coherent gate sequences are required for its
accurate implementation.
The phase estimation component of the canonical

quantum chemistry algorithm has been demonstrated in
a photonic system [36], a nuclear magnetic resonance
system [37], and a nitrogen-vacancy center system [38].
While all three experiments obtained molecular energies to
incredibly high precision, none of the experiments imple-
mented the propagator in a scalable fashion (e.g., using
Trotterization), as doing so requires long coherent evolu-
tions. Furthermore, none of these experiments used more
than a single qubit or qutrit to represent the entire molecule.
This was possible due to the use of the configuration basis,
which is not scalable but renders the experimental chal-
lenge much easier. Furthermore, all of these implementa-
tions applied the logic gates with a single, totally controlled
pulse, as opposed to compiling the algorithm to a universal
set of gates as we do.
There have been two previous experimental demonstra-

tions of VQE, first in a photonic system [19] and later in an
ion trap [39]. Both experiments validated the variational
approach, and the latter implemented an ansatz based on
unitary coupled cluster. All prior experiments focused
on either molecular hydrogen [36,37] or helium hydride
[19,38,39], but none of these prior experiments employed a
scalable qubit representation such as second quantization.
Instead, all five prior experiments represent the Hamiltonian
in a configuration basis that cannot be efficiently decom-
posed as a sum of local Hamiltonians, and then exponentiate
this exponentially large matrix as a classical preprocessing
step [19,36–39].
Until this work, important aspects of scalable chemistry

simulation such as the Jordan-Wigner transformation [40]
or the Bravyi-Kitaev transformation [41,42] had never been
used to represent a molecule in an experiment; however,
prior experiments such as Ref. [7] have previously used the

Jordan-Wigner representation to simulate fermions on a
lattice. In both experiments presented here, we simulate the
dissociation of molecular hydrogen in the minimal basis
of Hartree-Fock orbitals, represented using the Bravyi-
Kitaev transformation of the second quantized molecular
Hamiltonian [17]. As shown in Appendix A, the molecular
hydrogen Hamiltonian can be scalably written as

H ¼ g01þ g1Z0 þ g2Z1 þ g3Z0Z1 þ g4Y0Y1 þ g5X0X1;

ð1Þ

where fXi; Zi; Yig denote Pauli matrices acting on the ith
qubit and the real scalars fgγg are efficiently computable
functions of the hydrogen-hydrogen bond length R.
The ground-state energy of Eq. (1) as a function of R

defines an energy surface. Such energy surfaces are used to
compute chemical reaction rates which are exponentially
sensitive to changes in energy. If accurate energy surfaces
are obtained, one can use established methods such as
classical Monte Carlo or molecular dynamics simulations
to obtain accurate free energies, which provide the rates
directly via the Erying equation [43]. At room temperature,
a relative error in energy of 1.6 × 10−3 hartree (1 kcal/mol
or 0.043 eV) translates to a chemical rate that differs
from the true value by an order of magnitude; therefore,
1.6 × 10−3 hartree is known as “chemical accuracy” [43].
Our goal, then, is to compute the lowest energy eigen-
values of Eq. (1) as a function of R, to within chemical
accuracy.

II. VARIATIONAL QUANTUM EIGENSOLVER

Many popular classical approximation methods for
the electronic structure problem involve optimizing a
parametrized guess wave function (known as an “ansatz”)
according to the variational principle [43]. If we para-
metrize an ansatz jφð~θÞi by the vector ~θ, then the variational
principle holds that

hφð~θÞjHjφð~θÞi
hφð~θÞjφð~θÞi

≥ E0; ð2Þ

where E0 is the smallest eigenvalue of the Hamiltonian H.
Accordingly, E0 can be estimated by selecting the param-
eters ~θ that minimize the left-hand side of Eq. (2).
While the ground-state wave function is likely to be in

superposition over an exponential number of states in the
basis of molecular orbitals, most classical approaches
restrict the ansatz to the support of polynomially many
basis elements due to memory limitations. However,
quantum circuits can prepare entangled states, which are
not known to be efficiently representable classically. In
VQE, the state jφð~θÞi is parametrized by the action of a
quantum circuit Uð~θÞ on an initial state jϕi; i.e.,

P. J. J. O’MALLEY et al. PHYS. REV. X 6, 031007 (2016)
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jφð~θÞi≡Uð~θÞjϕi. Even if jϕi is a simple product state and
Uð~θÞ is a very shallow circuit, jφð~θÞi can contain complex
many-body correlations and span an exponential number of
standard basis states.
We can express the mapping Uð~θÞ as a concatenation

of parametrized quantum gates, U1ðθ1ÞU2ðθ2Þ…UnðθnÞ.
In this work, we parametrize our circuit according to
unitary coupled cluster theory [20,22,23]. As described
in Appendix D, unitary coupled cluster theory predicts that
the ground state of Eq. (1) can be expressed as

jφðθÞi ¼ e−iθX0Y1 j01i; ð3Þ

where jϕi ¼ j01i is the Hartree-Fock (mean-field) state
of molecular hydrogen in the representation of Eq. (1).
As discussed in Appendix D, unitary coupled cluster
theory is widely believed to be classically intractable and
is known to be strictly more powerful than the “gold
standard” of classical electronic structure theory, coupled
cluster theory [43–46]. The gate model circuit that
performs this unitary mapping is shown in the software
section of Fig. 1.
VQE solves for the parameter vector ~θ with a classical

optimization routine. One first prepares an initial ansatz
jφð~θ0Þi and then estimates the ansatz energy Eð~θ0Þ by
measuring the expectation values of each term in Eq. (1)
and summing these values together as

Eð~θÞ ¼
X

γ

gγhφð~θÞjHγjφð~θÞi; ð4Þ

where the gγ are scalars and the Hγ are local Hamiltonians

as in Eq. (1). The initial guess ~θ0 and the corresponding
objective value Eð~θ0Þ are then fed to a classical greedy
minimization routine (e.g., gradient descent), which then
suggests a new setting of the parameters ~θ1. The energy
Eð~θ1Þ is then measured and returned to the classical outer
loop. This continues for m iterations until the energy
converges to a minimum value Eð~θmÞ, which represents
the VQE approximation to E0.

Because our experiment requires only a single varia-
tional parameter, as in Eq. (3), we elect to scan 1000
different values of θ ∈ ½−π; πÞ in order to obtain expect-
ation values that define the entire potential energy curve.
We do this to simplify the classical feedback routine but at
the cost of needing slightly more experimental trials. These
expectation values are shown in Fig. 2(a) and the corre-
sponding energy surfaces at different bond lengths are
shown in Fig. 2(b). The energy surface in Fig. 2(b) is
locally optimized at each bond length to emulate an on-the-
fly implementation.
Figure 3(a) shows the exact and experimentally deter-

mined energies of molecular hydrogen at different bond
lengths. The minimum energy bond length (R ¼ 0.72 Å)
corresponds to the equilibrium bond length, whereas the
asymptote on the right-hand part of the curve corresponds
to dissociation into two hydrogen atoms. The energy
difference between these points is the dissociation energy,
and the exponential of this quantity determines the chemi-
cal dissociation rate. Our VQE experiment correctly pre-
dicts this quantity with an error of ð8% 5Þ × 10−4 hartree,
which is below the chemical accuracy threshold. Error bars

FIG. 1. Hardware and software schematic of the variational quantum eigensolver. (Hardware) micrograph shows two Xmon transmon
qubits and microwave pulse sequences to perform single-qubit rotations (thick lines), dc pulses for two-qubit entangling gates (dashed
lines), and microwave spectroscopy tones for qubit measurements (thin lines). (Software) quantum circuit diagram shows preparation of
the Hartree-Fock state, followed by application of the unitary coupled cluster ansatz in Eq. (3) and efficient partial tomography (Rt) to
measure the expectation values in Eq. (1). Finally, the total energy is computed according to Eq. (4) and provided to a classical optimizer
which suggests new parameters.
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frequency-tuning squid by a single JJ. This is also an important 
design for arrays of 3D transmon qubits where direct access 
for tuning individual qubits may be dif!cult or impossible.

The generic approach for coupling non-linear oscillators 
is to use electromagnetic driving !elds to induce parametric 
coupling with tunable strength by creating a spectrum of side-
bands bridging frequency gaps. In this way it is possible to 
entangle superconducting qubits with different frequencies 
using (i) !xed linear couplings, (ii) only microwave con-
trol signals, and (iii) tunable effective interaction strengths. 
Recently these methods have been applied experimentally 
through a variety of schemes based on two different princi-
ples: (i) driving qubits, and (ii) driving coupling resonators, 
e.g. a tunable bus.

6.5.1. Driving qubits.

Cross resonance (CR) 2q gates.  The CR scheme [255–
259] exploits already present nonlinearities to achieve tunable 
coupling, circumventing the need for nonlinear coupling ele-
ments. The CR two-qubit gate scheme irradiates one of the 
qubits at the transition frequency of the other qubit. In the 
presence of this cross-resonant microwave drive, an effec-
tive coupling emerges between the two qubits whose strength 
increases linearly with the ratio (drive amplitude)/(difference 
frequency).

The CR-coupling of two qubits, Q1 and Q2, can be under-
stood in the dressed state picture of quantum optics [255, 
256]. Under CR driving, the central transition at the irradia-
tion frequency of the driven dressed Q1 system is matched to 
the bare transition of the undriven Q2. One thus creates a reso-
nance between the central feature of the Mollow triplet on Q1 
and the bare transition of Q2. The tunability of the effective 
coupling strength G results from the evolution of the dressed 
Q1 eigenstates as the !eld amplitude F is adjusted [255, 256]:

Ĥeff = g(F) σz1 σx2, (53)

which is related to the CNOT gate by one additional local π/2 
rotation of each qubit.

In addition to the CR scheme, one approach is to create 
a microwave-activated conditional-phase gate (MAP) [260] 
based on driving the |03〉 and |12〉 transmon states into reso-
nance. A general problem with driving qubits is that the cou-
plings may depend sensitively on the qubit level structure. For 
transmon qubits the CR scheme is limited by the weak anhar-
monicity of the transmon, and the MAP scheme employs 
speci!c higher excited states of the transmon. These schemes 
may therefore be challenging to scale up to many qubits.

6.5.2. Driving a tunable bus. Attaching a SQUID to the end 
of a coplanar wave-guide resonator (CPW) makes it possible 
to vary the boundary condition (effective length) and cre-
ate a "ux-tunable resonator [261, 262] and to couple qubits 
[263, 264]. In [263], !xed-frequency qubits with different fre-
quencies were coupled by successively bringing each qubit 
quasi-statically in and out of resonance with the tunable CPW, 
effectively creating multi-qubit gates. In [261, 264], the CPW 
was rapidly tuned (chirped) to create interference and beating 
of microwave emission, which in principle could dynamically 
couple qubits [264]. Alternatively, one can drive the resonator 
at high frequency to create sideband structure and dynamic 
parametric coupling between qubits. This is presently at the 
focus of extensive and promising research [141, 221, 265–
267], potentially providing multi-qubit gate architectures for 
scaled-up systems. A recent proposal is based on the Dynami-
cal Casimir Effect [267]: A SQUID is then connected to the 
midpoint of a CPW resonator that is connected to transmon 
qubits at both ends, varying the coupling between the two 
halves by "ux tuning. Driving the SQUID at microwave fre-
quencies emits pair of photons that can entangle the qubits 
[267].

Resonator-induced phase gate (RIP). In the resonator-
induced phase gate (RIP) scheme [141, 221, 265] !xed-
frequency transmons are statically coupled to the same bus 
resonator driven at the difference frequency of two qubits.

In a two 2D-transmon setup [221], parametrically oscillat-
ing a "ux-tunable ‘bus qubit’ (similar to a combination of the 

Figure 13. Circuits for implementation of (a) CPHASE; (b) CNOT; (c) Ctrl-Z(θ), θ arbitrary; (d) basic circuit for phase estimation using an 
ancilla (top qubit); (e) the U = exp[−i θ2σz ⊗ σz] operator; (f) a controlled version of (e) for controlled time evolution and phase estimation 
(top qubit).
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with expectation value:

〈Ĥ〉 =
∑

iα

hiα〈σiα〉+
∑

iα,jβ

hiα,jβ〈σiασjβ〉+ .... (111)

The coef!cients are determined using a classical quantum 
chemistry package.

The expectation value of a tensor product 〈σiασjβσkγ .....〉 
of an arbitrary number of Pauli operators can be estimated 
by local measurement of each qubit [54], independent meas-
urements that can be performed in parallel. The advantage of 
this approach [456] is then that the coherence time to make 
a single measurement after preparing the state is O(1). The 
disadvantage relative to the PEA is that the scaling in the total 
number of operations as a function of the desired precision 
is quadratically worse [456]. The scaling will also re"ect the 
number of state preparation repetitions required, whereas in 
PEA the number of state preparation steps is constant.

In the end, however, the QEE dramatically reduces the 
coherence time requirement, while maintaining an exponen-
tial advantage over the classical case by adding only a polyno-
mial number of repetitions with respect to QPE [456].

10.1.2. Quantum variational eigensolver. The quantum vari-
ational eigensolver (QVE) [456] is based on the Ritz varia-
tional principle, !nding the minimum of the expectation value 
of the Hamiltonian under variation of the trial state function: 
(i) prepare the trial state |ψ〉; (ii) compute the Rayleigh–Ritz 
quotient 〈Hi〉 = 〈ψ|Ĥi|ψ〉/〈ψ||ψ〉 of all the terms in the Ham-
iltonian using the QEE as a subroutine; (iii) calculate 

∑
i 〈Hi〉; 

(iv) compare the resulting energy with the previous runs and 
feed back new parameters for the trial state. Note that the only 
step that is quantum is step (iii)—the other steps are prepared 
using a classical computer.

The issue now concerns state preparation. One example 
of a quantum state parameterised by a polynomial number 
of parameters for which there is no known ef!cient classical 
implementation is the unitary coupled cluster ansatz (UCC) 
[394, 456]

|ψ〉 = eT−T†
|ψref〉 (112)

where |ψref〉 is some reference state, usually the Hartree Fock 
ground state, and T is the cluster operator for an N electron 
system, de!ned by operators

T = T1 + T2 + T3 + .... + TN (113)

producing 1, 2, 3, ...., N  electron-hole pairs from the N-electron 
reference state. Explicity for T1 and T2:

T1 =
∑

pq

tpqc+p cq (114)

T2 =
∑

pqrs

tpqrsc+p c+q crcs (115)

The series in equations (114) and (115) generate in principle 
all possible con!gurations for FCI, producing all possible 
ground and excited state correlations.

In real molecules, often a limited number of these correla-
tions produce the bulk of the interaction energy due to the 

Coulomb repulsion. The problem is that to achieve the acc-
uracy needed for describing realistic molecular chemical 
energy surfaces and accurately predicting chemical reaction 
paths, a large number of small correlations are needed to build 
up to the !nal accurate result. This is QMA-hard, i.e. intrac-
table for both classical and quantum computers. It therefore 
becomes a question of useful approximations. Again, note 
here the recent work by Carleo and Troyer [363].

In the case of the two-electron H2 and He–H+ molecules, 
N = 2. The cluster operators are then limited to T1 and T2 in 
equation (112) and it is possible to apply the full machinery 
with suitable approximations and to obtain chemical accuracy.

10.1.3. H–H ground-state energy curve. We will now describe 
an experimental application of the QVE to the problem of the 
ground-state energy curve of the hydrogen molecule [38].

For a 2-electron system, the Hamiltonian reduces to

Ĥ =
∑

iα

hiα(R) σiα +
∑

iα,jβ

hiα,jβ(R) σiασjβ (116)

or equivalently

Ĥ = g01+ g1Z0 + g2Z1 + g3Z0Z1 + g4X0X1 + g5Y0Y1 (117)

where the set of parameters gi = gi(R) depends on the H–H 
distance and is obtained from the expectation values of the 
Hamiltonian terms evaluated on a classical computer using 
the basis (reference) states.

We discussed quantum state preparation in general in sec-
tion 9, and the coupled-cluster approach above. In the QVE, 
the state |ψ(θ)〉 is parameterised by the action of a quantum 
circuit Û(θ) on an initial state |ψref〉, i.e. |ψ(θ)〉 = Û(θ)|ψref〉. 
Even if |ψ(θ)〉 is a simple product state and Û(θ) is a very 
shallow circuit, |ψref〉 can contain complex many-body cor-
relations and span an exponential number of standard basis 
states.

The unitary coupled cluster approach states that the ground 
state of equation (112) can be expressed as

|ψ(θ)〉 = Û(θ)|ψHF〉 = e−iθX0Y1 |01〉 (118)

where |01〉 is the Hartree–Fock (mean-!eld) state of molecu-
lar hydrogen in the representation of equation (112). The gate 
model circuit that performs this unitary mapping is shown in 
the software section of !gure 29.

The total bonding energy curve in !gure 30 demonstrates 
chemical accuracy (better than 10−3 hartree), which is a very 
important result. In contrast, the calculation using the full 
canonical protocol of trotterisation plus quantum phase esti-
mation (PEA) turns out much less accurate, amply demon-
strating that the fully quantum approach is very demanding on 
coherence time.

10.1.4. He-H+ ground-state energy curve. The QVE was 
originally applied to the helium-hydride cation He–H+ prob-
lem on a 2-qubit photonic processor by Peruzzo et al [456] . 
Recently, Wang et al [473] applied the IPEA to the He–H+ 
problem using a solid-state quantum register realised in a 
nitrogen-vacancy centre (NVC) in diamond, reporting an 
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stochastic calculus concerns generalisation of the Langevin 
equation to quantum systems. Because of the relation to stochas-
tic processes one has adopted the term ‘stoquastic’ to refer to 
quantum Hamiltonians where all off-diagonal matrix elements 
in the standard basis are real and non-positive [401]. Stoquastic 
Hamiltonians are very common in physics. Among spin-1/2 
models, the well-studied ferromagnetic Heisenberg models and 
the quantum transverse Ising model [79] are stoquastic. Another 
example is a Heisenberg antiferromagnet on a cubic lattice.

Barends et  al chose to investigate a stoquastic frustrated 
Ising Hamiltonian having random local X and Z "elds, and 
random zz couplings. Non-stoquastic problems have addi-
tional random xx couplings. The results show that the system 
can "nd the ground states of both stoquastic and non-stoquas-
tic Hamiltonians with comparable performance.

9.6. Digital quantum simulation of fermionic models

Computational physics, chemistry and materials science deal 
with the structure and dynamics of electronic systems: atoms, 
molecules, solids, liquids, soft matter, etc. To describe these 
systems one needs the full machinery of quantum many-body 
theory involving fermionic and bosonic particles and exci-
tations. So far a we have been working with 2-level (spin) 
systems coupled to bosonic modes. However, to describe 
electronic systems, the fermionic anti-commutation rules have 
to be built in. One way to do this was invented a long time 
ago in the form of the Jordan–Wigner (JW) transformation 

[402]. One then works in the occupation-number representa-
tion and keeps track of parity under permutations via the the 
anti- commutation rules of a set of auxiliary Pauli σ operators 
embedded in the fermionic creation and annihilation opera-
tors. In this way the number of σ operators scales as O(n), i.e. 
as the number of qubits.

Bravyi and Kitaev [403] derived an alternative (BK) trans-
formation, using the qubits for storing parities rather than 
occupation numbers. This scheme also maps the fermionic 
operators on products of Pauli σ operators. One advantage, 
however, is that the number of σ operators scales as O(logn), 
which will be important for simulation of large systems that 
require large numbers of qubits.

These methods have been developed theoretically and 
simulated classically over the last 15 years [390, 404–409], 
but never explored experimentally, until now. The "rst exper-
imental applications ever, with superconducting circuits, 
have recently been published, implementing digital simula-
tion of the Fermi–Hubbard model [36] and the ground state 
binding curve of the hydrogen molecule, H2 [38] (see further 
section 10.1.4).

For illustration of the approach to an elementary fermonic 
many-body system, consider a closed-shell atom or molecule. 
The general second-quantised Hamiltonian is given by:

Ĥ =
∑

pq

hpqc+p cq +
1
2

∑

pqrs

hpqrsc+p c+q crcs

 
(96)

where the "rst term describes the single-particle kinetic and 
potential energies, and the second term the 2-body Coulomb 
interaction. The indices refer to the set of basis orbitals (fermi-
onic modes) used to expand the Hamiltonian.

The simplest possible case is the ground state of a 2-elec-
tron system with a minimal basis of 2 states: a He atom with 
1s ↑ 1s ↓, or a H2 molecule with 1σ ↑ 1σ ↓. The Hartree 
Hamiltonian is then given by:

Ĥ = h1c+1 c1 + h2c+2 c2 + V12c+1 c1c+2 c2 (97)

Figure 26. (a) Two-spin XY model: Circuit diagram implementing the ÛXY(t) gate for a certain time t = τ . (b) Two-spin Heisenberg 
(XYZ) model: Circuit diagram implementing the ÛXYZ(t) gate (equation (90)) for a certain time t = τ . (c) Time evolution ÛXY(t) of the 
two-spin XY model: Experimentally determined coordinates of the Bloch vectors. Red (Q1) and blue (Q2) points are compared to the ideal 
paths shown as dashed lines in the XY model. (d) describes the same thing for the Heisenberg (XYZ) model. Reproduced from [192].  
CC BY 3.0.

Figure 27. Protocol to decompose and simulate Ising XY spin 
dynamics in a homogeneous transverse magnetic "eld. Reproduced 
from [192]. CC BY 3.0.
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stochastic calculus concerns generalisation of the Langevin 
equation to quantum systems. Because of the relation to stochas-
tic processes one has adopted the term ‘stoquastic’ to refer to 
quantum Hamiltonians where all off-diagonal matrix elements 
in the standard basis are real and non-positive [401]. Stoquastic 
Hamiltonians are very common in physics. Among spin-1/2 
models, the well-studied ferromagnetic Heisenberg models and 
the quantum transverse Ising model [79] are stoquastic. Another 
example is a Heisenberg antiferromagnet on a cubic lattice.

Barends et  al chose to investigate a stoquastic frustrated 
Ising Hamiltonian having random local X and Z "elds, and 
random zz couplings. Non-stoquastic problems have addi-
tional random xx couplings. The results show that the system 
can "nd the ground states of both stoquastic and non-stoquas-
tic Hamiltonians with comparable performance.

9.6. Digital quantum simulation of fermionic models

Computational physics, chemistry and materials science deal 
with the structure and dynamics of electronic systems: atoms, 
molecules, solids, liquids, soft matter, etc. To describe these 
systems one needs the full machinery of quantum many-body 
theory involving fermionic and bosonic particles and exci-
tations. So far a we have been working with 2-level (spin) 
systems coupled to bosonic modes. However, to describe 
electronic systems, the fermionic anti-commutation rules have 
to be built in. One way to do this was invented a long time 
ago in the form of the Jordan–Wigner (JW) transformation 

[402]. One then works in the occupation-number representa-
tion and keeps track of parity under permutations via the the 
anti- commutation rules of a set of auxiliary Pauli σ operators 
embedded in the fermionic creation and annihilation opera-
tors. In this way the number of σ operators scales as O(n), i.e. 
as the number of qubits.

Bravyi and Kitaev [403] derived an alternative (BK) trans-
formation, using the qubits for storing parities rather than 
occupation numbers. This scheme also maps the fermionic 
operators on products of Pauli σ operators. One advantage, 
however, is that the number of σ operators scales as O(logn), 
which will be important for simulation of large systems that 
require large numbers of qubits.

These methods have been developed theoretically and 
simulated classically over the last 15 years [390, 404–409], 
but never explored experimentally, until now. The "rst exper-
imental applications ever, with superconducting circuits, 
have recently been published, implementing digital simula-
tion of the Fermi–Hubbard model [36] and the ground state 
binding curve of the hydrogen molecule, H2 [38] (see further 
section 10.1.4).

For illustration of the approach to an elementary fermonic 
many-body system, consider a closed-shell atom or molecule. 
The general second-quantised Hamiltonian is given by:

Ĥ =
∑

pq

hpqc+p cq +
1
2

∑

pqrs

hpqrsc+p c+q crcs

 
(96)

where the "rst term describes the single-particle kinetic and 
potential energies, and the second term the 2-body Coulomb 
interaction. The indices refer to the set of basis orbitals (fermi-
onic modes) used to expand the Hamiltonian.

The simplest possible case is the ground state of a 2-elec-
tron system with a minimal basis of 2 states: a He atom with 
1s ↑ 1s ↓, or a H2 molecule with 1σ ↑ 1σ ↓. The Hartree 
Hamiltonian is then given by:

Ĥ = h1c+1 c1 + h2c+2 c2 + V12c+1 c1c+2 c2 (97)

Figure 26. (a) Two-spin XY model: Circuit diagram implementing the ÛXY(t) gate for a certain time t = τ . (b) Two-spin Heisenberg 
(XYZ) model: Circuit diagram implementing the ÛXYZ(t) gate (equation (90)) for a certain time t = τ . (c) Time evolution ÛXY(t) of the 
two-spin XY model: Experimentally determined coordinates of the Bloch vectors. Red (Q1) and blue (Q2) points are compared to the ideal 
paths shown as dashed lines in the XY model. (d) describes the same thing for the Heisenberg (XYZ) model. Reproduced from [192].  
CC BY 3.0.

Figure 27. Protocol to decompose and simulate Ising XY spin 
dynamics in a homogeneous transverse magnetic "eld. Reproduced 
from [192]. CC BY 3.0.
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with expectation value:

〈Ĥ〉 =
∑

iα

hiα〈σiα〉+
∑

iα,jβ

hiα,jβ〈σiασjβ〉+ .... (111)

The coef!cients are determined using a classical quantum 
chemistry package.

The expectation value of a tensor product 〈σiασjβσkγ .....〉 
of an arbitrary number of Pauli operators can be estimated 
by local measurement of each qubit [54], independent meas-
urements that can be performed in parallel. The advantage of 
this approach [456] is then that the coherence time to make 
a single measurement after preparing the state is O(1). The 
disadvantage relative to the PEA is that the scaling in the total 
number of operations as a function of the desired precision 
is quadratically worse [456]. The scaling will also re"ect the 
number of state preparation repetitions required, whereas in 
PEA the number of state preparation steps is constant.

In the end, however, the QEE dramatically reduces the 
coherence time requirement, while maintaining an exponen-
tial advantage over the classical case by adding only a polyno-
mial number of repetitions with respect to QPE [456].

10.1.2. Quantum variational eigensolver. The quantum vari-
ational eigensolver (QVE) [456] is based on the Ritz varia-
tional principle, !nding the minimum of the expectation value 
of the Hamiltonian under variation of the trial state function: 
(i) prepare the trial state |ψ〉; (ii) compute the Rayleigh–Ritz 
quotient 〈Hi〉 = 〈ψ|Ĥi|ψ〉/〈ψ||ψ〉 of all the terms in the Ham-
iltonian using the QEE as a subroutine; (iii) calculate 

∑
i 〈Hi〉; 

(iv) compare the resulting energy with the previous runs and 
feed back new parameters for the trial state. Note that the only 
step that is quantum is step (iii)—the other steps are prepared 
using a classical computer.

The issue now concerns state preparation. One example 
of a quantum state parameterised by a polynomial number 
of parameters for which there is no known ef!cient classical 
implementation is the unitary coupled cluster ansatz (UCC) 
[394, 456]

|ψ〉 = eT−T†
|ψref〉 (112)

where |ψref〉 is some reference state, usually the Hartree Fock 
ground state, and T is the cluster operator for an N electron 
system, de!ned by operators

T = T1 + T2 + T3 + .... + TN (113)

producing 1, 2, 3, ...., N  electron-hole pairs from the N-electron 
reference state. Explicity for T1 and T2:

T1 =
∑

pq

tpqc+p cq (114)

T2 =
∑

pqrs

tpqrsc+p c+q crcs (115)

The series in equations (114) and (115) generate in principle 
all possible con!gurations for FCI, producing all possible 
ground and excited state correlations.

In real molecules, often a limited number of these correla-
tions produce the bulk of the interaction energy due to the 

Coulomb repulsion. The problem is that to achieve the acc-
uracy needed for describing realistic molecular chemical 
energy surfaces and accurately predicting chemical reaction 
paths, a large number of small correlations are needed to build 
up to the !nal accurate result. This is QMA-hard, i.e. intrac-
table for both classical and quantum computers. It therefore 
becomes a question of useful approximations. Again, note 
here the recent work by Carleo and Troyer [363].

In the case of the two-electron H2 and He–H+ molecules, 
N = 2. The cluster operators are then limited to T1 and T2 in 
equation (112) and it is possible to apply the full machinery 
with suitable approximations and to obtain chemical accuracy.

10.1.3. H–H ground-state energy curve. We will now describe 
an experimental application of the QVE to the problem of the 
ground-state energy curve of the hydrogen molecule [38].

For a 2-electron system, the Hamiltonian reduces to

Ĥ =
∑

iα

hiα(R) σiα +
∑

iα,jβ

hiα,jβ(R) σiασjβ (116)

or equivalently

Ĥ = g01+ g1Z0 + g2Z1 + g3Z0Z1 + g4X0X1 + g5Y0Y1 (117)

where the set of parameters gi = gi(R) depends on the H–H 
distance and is obtained from the expectation values of the 
Hamiltonian terms evaluated on a classical computer using 
the basis (reference) states.

We discussed quantum state preparation in general in sec-
tion 9, and the coupled-cluster approach above. In the QVE, 
the state |ψ(θ)〉 is parameterised by the action of a quantum 
circuit Û(θ) on an initial state |ψref〉, i.e. |ψ(θ)〉 = Û(θ)|ψref〉. 
Even if |ψ(θ)〉 is a simple product state and Û(θ) is a very 
shallow circuit, |ψref〉 can contain complex many-body cor-
relations and span an exponential number of standard basis 
states.

The unitary coupled cluster approach states that the ground 
state of equation (112) can be expressed as

|ψ(θ)〉 = Û(θ)|ψHF〉 = e−iθX0Y1 |01〉 (118)

where |01〉 is the Hartree–Fock (mean-!eld) state of molecu-
lar hydrogen in the representation of equation (112). The gate 
model circuit that performs this unitary mapping is shown in 
the software section of !gure 29.

The total bonding energy curve in !gure 30 demonstrates 
chemical accuracy (better than 10−3 hartree), which is a very 
important result. In contrast, the calculation using the full 
canonical protocol of trotterisation plus quantum phase esti-
mation (PEA) turns out much less accurate, amply demon-
strating that the fully quantum approach is very demanding on 
coherence time.

10.1.4. He-H+ ground-state energy curve. The QVE was 
originally applied to the helium-hydride cation He–H+ prob-
lem on a 2-qubit photonic processor by Peruzzo et al [456] . 
Recently, Wang et al [473] applied the IPEA to the He–H+ 
problem using a solid-state quantum register realised in a 
nitrogen-vacancy centre (NVC) in diamond, reporting an 
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|cS that minimizes

hc j H j ci
hc j ci : ð3Þ

By varying the experimental parameters in the preparation of
|cS and computing the Rayleigh–Ritz quotient using QEE as
a subroutine in a classical minimization, one may prepare
unknown eigenvectors. At the termination of the algorithm, a
simple prescription for the reconstruction of the eigenvector is
stored in the final set of experimental parameters that define |cS.

If a quantum state is characterized by an exponentially large
number of parameters, it cannot be prepared with a polynomial
number of operations. The set of efficiently preparable states are
therefore characterized by polynomially many parameters, and
we choose a particular set of ansatz states of this type. Under
these conditions, a classical search algorithm on the experimental
parameters that define |cS needs only explore a polynomial
number of dimensions—a requirement for the search to be
efficient. One example of a quantum state parameterized by a
polynomial number of parameters for which there is no known
efficient classical implementation is the unitary coupled cluster
ansatz29

j Ci ¼ eT $Tw j Firef : ð4Þ

where |FSref is some reference state, usually the Hartree Fock
ground state, and T is the cluster operator for an N electron
system, defined by

T ¼ T1þT2þT3þ :::þTN ; ð5Þ

where

T1 ¼
X

pr

tr
pâwpâr ð6Þ

T2 ¼
X

pqrs

trs
pqâwpâwqârâs ð7Þ

and higher-order terms follow logically. It is clear that by
construction the operator (T$Tw) is anti-hermitian,
and exponentiation maps it to a unitary operator U ¼ eðT $TT Þ.
For any fixed excitation level k, the reduced cluster operator is

written as

TðkÞ ¼
Xk

i¼1

Ti: ð8Þ

In general no efficient implementation of this ansatz has yet been
developed for a classical computer, even for low-order cluster
operators, due to the non-truncation of the BCH series29.
However, this state may be prepared efficiently on a quantum
device. The reduced anti-hermitian cluster operator (T(k)$T(k)w)
is the sum of a polynomial number of terms—namely, it contains
a number of terms O(Nk(M$N)k), where M is the number of
single-particle orbitals. By defining an effective Hermitian
Hamiltonian H¼ i(T(k)$T(k)w) and performing the Jordan–
Wigner transformation to reach a Hamiltonian that acts on the
space of qubits, ~H, we are left with a Hamiltonian that is a sum of
polynomially many products of Pauli operators. The problem
then reduces to the quantum simulation of this effective
Hamiltonian, ~H, which can be done in polynomial time using
the procedure outlined by Ortiz et al.23 We note that while this
state preparation procedure utilizes tools from quantum
simulation, the total effective time of evolution is fixed by the
expansion coefficients trs

pq. This is in contrast to the normal
difficulties encountered in QPE, where simulations must be
carried out for times that are exponential in the desired bits of
precision.

While there is currently no known efficient classical algorithm
based on these ansatz states, non-unitary coupled cluster ansatz is
sometimes referred to as the ‘gold standard of quantum
chemistry’ as it is the standard of accuracy to which other
methods in quantum chemistry are often compared. The unitary
version of this ansatz is thought to yield superior results to even
this ‘gold standard’29.

Prototype demonstration. We have implemented the QPU using
integrated quantum photonics technology30. Our device, shown
schematically in Fig. 2, is a reconfigurable waveguide chip that
can prepare and measure arbitrary two-bit pure states using
several single-qubit rotations and one two-qubit entangling gate.
The state is path-encoded using photon pairs generated via a
spontaneous parametric downconversion process. State
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Figure 1 | Architecture of the quantum-variational eigensolver. In QEE, quantum states that have been previously prepared are fed into the quantum
modules, which compute /HiS, where Hi is any given term in the sum defining H. The results are passed to the CPU, which computes /HS. In the
quantum variational eigensolver, the classical minimization algorithm, run on the CPU, takes /HS and determines the new state parameters, which are
then fed back to the QPU.
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will explore implementations of this algorithm on the OpenSuperQ platform in combination with DMFT (Y1) and apply it to 
molecular materials. (Y2) 

USAAR in the process of adapting its existing methodology of variational cluster algorithms on a 
quantum computer – which are a generalization of DMFT – to concrete examples and for applications 
in concrete hardware. USAAR has also developed a roadmap to simulate systems capable of the 
fractional quantum Hall effect on quantum computers. See Deliverable 1.10 for details. FZJ plans 
solving the Hubbard model with JUQCS. 
 
 
Task 1.2 Benchmarking use-cases for machine learning and optimization 
 
1.2.1: Machine learning and AI applications: 

DoA: CHALMERS and UPV/ EHU will develop and benchmark QAOA use-cases on classical computers (i) to explore the 
performance of different number of steps in the QAOA and (ii) to investigate the scaling properties of the chosen use-cases, 
for an error free implementation, as well as for realistic error models from the hardware-based model (1.3.1). The result 
will be an optimized gate sequence that will be run by the experimental partners on the OpenSuperQ HW, as well as a 
report analyzing the quantum advantage in the cases considered. 

Flight Optimization using QAOA 

In collaboration with the Boeing subsidiary Jeppesen, CHALMERS has investigated the performance 
of the Quantum Approximate Optimization Algorithm (QAOA) for optimizing small but realistic 
instances derived from real world data of logistic scheduling relevant to airlines. Airlines today are 
faced with a number of large scale scheduling problems. One such problem is the tail assignment 
problem, which is the task of assigning individual aircraft (identified by the number on its tail fin) to a 
given set of flights, minimizing the overall cost.  

The QAOA is a variational hybrid quantum-classical algorithm recently introduced and likely to run on 
near-term quantum devices.  

 

FIGure 2:  Schematic representation of the QAOA. The quantum processor prepares the variational state, 
depending on variational parameters. The variational parameters (⃗γ, β⃗) are optimized in a closed loop using a 
classical optimizer.  

Jeppesen reduced real instances obtained from their customers to instances with 8, 15 and 25 
decision variables, which can be run on a quantum computer with 8, 15 and 25 qubits respectively. 
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FIG. 1. Schematic representation of the QAOA. The quan-
tum processor prepares the variational state, depending on
variational parameters. The variational parameters (~�, ~�) are
optimized in a closed loop using a classical optimizer.

where ĤC is the cost Hamiltonian given by Eq. (8), and
ĤM ⌘

P
n

i=1 �̂
x

i
is a so called mixing Hamiltonian. The

alternating sequence continues for a total of p times with
di↵erent variational parameters ~� = (�1, . . . , �p) with

�i 2 [0, 2⇡] if ĤC has integer-valued eigenvalues, and
~� = (�1, . . . ,�p) with �i 2 [0,⇡], such that the final vari-
ational state obtained is:

| p(~�, ~�)i ⌘ V̂ (�p)Û(�p) . . . V̂ (�1)Û(�1) |+i⌦n
. (17)

The parametrized quantum gates are then optimized in
a closed loop using a classical optimizer, see Fig. 1. The
objective of the classical optimizer is to find the opti-
mal variational parameters that minimize the expecta-
tion value of the cost Hamiltonian

(~�⇤, ~�⇤) = argmin
~�,~�

Ep(~�, ~�), (18)

where

Ep(~�, ~�) ⌘ h p(~�, ~�)|ĤC | p(~�, ~�)i . (19)

Note that this requires in principle multiple state prepa-
rations and measurements. Once the best possible varia-
tional parameters are found, they are used to create the
state | p(~�⇤, ~�⇤)i, using the quantum processor for the
state preparation. Then, one samples from this state by
measuring in the computational basis, and the cost of
the configuration obtained in the measurement, given by
Eq. (8), is evaluated. The latter step is classically e�-
cient.

The success probability is defined as the probability
of finding the qubits in their ground state configuration
|xsoli when performing a single shot measurement of the

| p(~�, ~�)i state, i.e.

Fp(~�, ~�) ⌘ | hxsol| p(~�, ~�)i |2, (20)

where xsol = x1x2 . . . xn is the bit string corresponding to
the solution. Given this success probability we can ask:
what is the probability of having observed the solution at
least once after m repeated measurements? The answer
is given by:

1� (1� Fp(~�, ~�))
m
. (21)

Thus to have the probability (1 � ") of observing the
solution, m has to be

m >
log "

log (1� Fp(~�, ~�))
. (22)

To fix the ideas, consider a fair coin. In order to have a
probability higher than 99.9 % of observing Head at least
once, one has to flip and “measure” the coin 10 times.

In what follows, we are going to apply this paradigm to
solve the Exact Cover problem, by using the correspond-
ing cost Hamiltonian, expressed by Eq. (8) with Jij and
hi given by Eq. (12) and (13) respectively.

IV. RESULTS

We will examine instances for three di↵erent problem
sizes of the tail assignment problem given in Table I, cor-
responding to 8, 15 and 25 routes. As clear from Eq. (8),
this requires quantum processors with 8, 15 and 25 qubits
respectively.

TABLE I. Information about the problem instances.

Routes Flights No. of instances No. of sol. per instance
8 77 10 1
15 77 9 1
25 278 10 1

A. Energy landscape

Firstly, we can reduce the search space by noting that
the eigenvalues of both Hamiltonians ĤC and ĤM are
integer-valued. As a consequence, the expectation value
Eq. (19) has even-symmetry, i.e. Ep(~�, ~�) = Ep(�~�,�~�).
This symmetry allow us to restrict the domain of each �i
to �i 2 [0,⇡].

To highlight the di�culty of finding the best varia-
tional parameters we can visualize the landscape of the
expectation value E1(�,�), as well as the corresponding
success probability F1(�,�), as a function of � and �, for
p = 1, by evaluating them on a fine grid [0,⇡] ⇥ [0,⇡].
Fig. 2 shows the simulation result for one of the 25 route
instances. The variational parameters resulting in the
lowest expectation value, (�exp,�exp), and those result-
ing in the highest success probability, (�succ,�succ), are
approximately the same. In fact |�exp � �succ| ' 0 and
|�exp��succ| ' 0.047. Note that this is not obvious, since
QAOA only minimizes the expectation value, and does
not explicitly maximize the success probability; a low
expectation value does not necessarily translates onto a
high success probability. For example, consider a vari-
ational state that is a linear combination of low energy
excited eigenstates of the cost Hamiltonian. This state
could potentially have a low expectation value while the

HPCQC

 

 

OpenSuperQ (820363) Deliverable 1.2 page 5/28 

 

This means that the implementation of gate sequences can be, and has been, done at �,�>D�Z^͛ 
HPC as well as at FZJ. Therefore, as far as QChem is concerned, there is no need for transferring 

quantum circuit gate lists to FZJ. Instead we specify instances to be run at different workstations and 

HPC for comparison.  

2 Description of Activities 

2.1 Introduction 

During the first 12 months CHALMERS focused on training activities, learning QISKit and reproducing 

the ground state energies of H2, LiH, BeH2, Li2 and H2O single molecules with minimal basis sets. 

During months 12-18 CHALMERS has concentrated on the central OSQ objectives: ground state 

energies of single molecules of water (H2O) and hydrogen cyanide (HCN), as well as of the nitrogen 

(N2) molecule. Through interaction with IBMZ, Chalmers got access to upgraded QISKit code [4] 

implementing state-of-the-art reduction of qubit and gate resources. This now makes it possible to 

work with water clusters and HCN derivatives in useful applications executed on HPC quantum 

simulators.� 

2.2 Methodology 

At CHALMERS we have implemented the Python-based QISKit-aqua-chemistry software package 

[5,6] on local workstations and on the C3SE HPC at CHALMERS, setting up and performing ground-

state calculations for water (H2O) and hydrogen cyanide (HCN) using the Variational Quantum 

Eigensolver (VQE) [8]:  

(i) Constructing the Hamiltonian and a parametrized trial wave function;  

(ii) Evaluating the expectation value (energy) of the Hamiltonian;  

(iii) Updating the parameters to minimise the energy.  

The first and third are performed on a classical computer, while the second /step (2) is performed on 

a quantum computer (real or simulated).  

 

The Variational Quantum Eigensolver (VQE) implements the Rayleigh-Ritz variational principle: 

 

       
 

The VQE is a classical-quantum hybrid algorithm where the trial function _\�T�! is created in the 

qubit register by gate operations. In a fully quantum HW calculation of the expectation value, the 

energy is estimated via quantum state tomography of each of the Pauli operator products of Hi. In 

quantum simulations on an HPC, the state vector is available classically, and the expectation value of 

H can be evaluated directly. The VQE scales badly for large molecules (due to repeated 

measurements/tomography to form the expectation value of the Hamiltonian, <H>. Nevertheless, 

the VQE is the common approach for small molecules with present NISQ HW. The phase-estimation 

algorithm (PEA) scales better, but involves much deeper circuits, and puts much higher demands on 

the coherence time of the q-register. 

 
The main steps in our VQE calculations are as follows: 

We start from a unitary coupled cluster (UCC) ansatz of the quantum state _\�T�!�with variational 

parameter T��

HPCQC

Quantum variational methods

Quantum Variational Eigensolver (VQE) Quantum Approximate Optimization
Algorithm (QAOA)

2 sides of the same coin
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We illustrate the VQE in some detail by showing how it works for the 2-electron hydrogen molecule. 
The fermionic operators in the Hamiltonian  
 

 
are transformed into products of Pauli operators that can operate on qubits while conserving the 
anticommutation rules  
 

 
or explicitly (renaming the Pauli operators):  
 

 
 
The electron correlation part is particularly simple because there are no exchange terms.  
 
The UCCSD approximation creates the trial function via double excitations from the Hartree-Fock 
(HF) mean-field reference state |01>, building-in electron pair-correlation effects.  

 
 
The Hartree-Fock reference state |01> is created through a bit flip operation:  X0|00> -->>|01>. The 
core of the UCCSD-generating quantum circuit is given by a CNOT, a parametrised Rz(T) rotation, and 
another CNOT (Fig.2(a)), generating the unitary operator in Fig.2(b): 
 

                        
 
Figure 2:         (a)        (b)     
 
The desired form in the UCCSD ansatz for _\�T�!�is obtained by additional 1q Pauli rotation gates (Fig. 
3): 
 

         
 
 Figure 3. The Variational Quantum Eigensolver (VQE) for H2 (adapted from [9]).  
 
Fig. 3 describes the measurement approach, needed for experimental implementations. However, 
since we are simulating the ideal quantum HW on an HPC, the required gate list to describe the 
quantum state vector does not involve the tomographic Rt gates and the final measurements. The 
expectation value <H> is evaluated directly via matrix operations. 

Qchem, fermionic, qubitization Ising, qubits

Rayleigh-Ritz

Quantum state tomography

Evaluate cost 
function 

Update 
parameters

Quantum circuit 
trial function

Quantum variational methods

a1 |00000> +
a2 |00001> +
a3 |00010> +
a4 |00011> +
…………….. +
an |11111> 

n = 25 = 32
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FIG. 1: Quantum circuits for operator exponentiation: (a) e�iqs1zs2z ; (b) e�iqs1zs2zs3z

The fermionic operators c+i and ci in the molecular Hamiltonian

Ĥ = Â
pq

hpqc+p cq +
1
2 Â

pqrs
hpqrsc+p c+q crcs (5)

must also be expanded in products of Pauli spin-operators using one transformation of the listed above, namely JW, BK and
Parity, resulting in the generic interaction form:

Ĥ = Â
ia

hia sia + Â
ia, jb

hia, jb sia s jb + Â
ia, jb ,kg

hia, jb ,kg sia s jb skg + ....... (6)

where sia corresponds to the Pauli matrix sa for a 2 {0,x,y,z}, acting on the i-th qubit.
In practice, we start from a classical HF description and remove states that have the wrong spin and do not conserve the

number of electrons (tapering, Z2-symmetry [9, 10]). After fermion-to-spin operator Parity mapping we then Trotterize the
UCC-operator (Eq. 2).

The expectation value of the Hamiltonian Âi Ĥi can then be calculated in two ways: (1) State-vector approach: direct calcu-
lation of Âi hy|Ĥi|yi by matrix operations (Qiskit state-vector backend); (2) Measurement approach: generating an ensemble
of identical trial states and measuring the Pauli operators of the Hamiltonian terms Ĥi (QASM backend; or experimental q-HW
backends).

As a simplest possible example, in the case of the 2-electron hydrogen molecule (i = 1,2), one gets:

Ĥ = g01+g1s10 +g2s20 +g3s10s20 +g4s1xs2x +g5s1ys2y (7)

where g1 �g5 are coefficients describing the weights of the terms in the transformed Hamiltonian. The UCCSD approximation
creates the trial function via double excitations from the Hartree-Fock (HF) mean-field reference state |01>, building-in electron
pair-correlation effects:

|y(q)i= Û(q)
��yre f

↵
= e�iqs1xs2y |01i (8)

The Hartree-Fock reference state |01> is created through a bit flip operation: s1z|00i! |01i. The UCCSD-generating quantum
circuit is given by a CNOT, a parametrized Rz(q) rotation, and another CNOT, generating the unitary operator in Fig. 1(a). The
desired form in the UCCSD ansatz for |y(q)i in Eq. 2 is obtained by additional single-qubit rotation gates. In general, for
systems with more that 2 electrons, the ansatz and the Hamiltonian will involve products with operators involving more than two
qubits. A product of 3 operators is shown in Fig. 1(b) and is generalized to exponents with tensor products of Pauli operators for
n qubits, which generates quantum circuits with n-qubit operations.

In the H2-case there is only one single variational parameter, and the optimization of the energy is trivial. For larger molecules,
the number of UCCSD variational parameters can be very large (see Tables I-IV), and the optimization loop becomes classically
intractable.

In summary, our practical approach is as follows:

• Basic program package: VQE implemented by Qiskit Aqua [9].

• Initial/reference state: Hartree-Fock (HF) provided by PySCF.

• HF wave-functions calculated in general with a Pople minimal orbital basis STO-6G. However, to achieve higher accuracy,
in several cases we used 6-31G, and in a few cases 6-31+G* and 6-31++G*. Those basis sets give better accuracy, but
also require a much greater number of qubits.

• Variational ansatz: Trotterized Unitary Coupled Cluster Singles and Doubles (UCCSD). We have chosen to systematically
use the UCCSD, rather than experimenting with "hardware-efficient" trial functions [12]. UCCSD represents a funda-
mental QChem benchmark, providing a systematic approximation of many-electron correlations beyond the Hartree-Fock
mean-field level. In our view, the UCCSD is an important starting point for developing HW-efficient approaches.

2

molecules, like nitrogen, N2. Computing the ground state energy of N2 with 12 qubits and a few thousand 2-qubit gates should
be possible in the near future with NISQ hardware (HW).

The case of HCN is a bit more challenging for real HW, currently needing 15 qubits and 33 000 2-qubit gates already with a
minimal basis set. However, the number of gates and time-to-solution can certainly be reduced with lower demands for accuracy.
This may be useful for exploring larger systems and approximate implementations on physical HW. Note that minimal basis sets
are of no interest if one wants to challenge modern quantum chemistry. In the case of H2O, the present work demonstrates that a
better basis set (Pople 6-31G) requires 20 qubits. For HCN, the 6-31G basis set increases the number of qubits to 33, with 3000
variational parameters and over 600000 gates. This quantum simulation cannot be handled by any high-performance computer
(HPC) today. This is remarkable in the light of that an HPC can easily solve the same problem using modern quantum chemistry
methods.

II. METHODS

We have implemented the Python-based Qiskit software package [9, 10] on local workstations and clusters, setting up and
performing ground-state calculations for water (H2O) and hydrogen cyanide (HCN), as well as for several related molecules and
radicals, using the Variational Quantum Eigensolver (VQE) [11]: (1) Constructing the Hamiltonian Ĥ and a parametrized trial
wave function |y(q)i; (2) Evaluating the energy E of the state |y(q)i, i.e. the expectation value of the Hamiltonian Ĥ; (3)
Updating the parameters q = (q1,q2, . . . ,qm) to minimise the energy E. The first and third steps are performed on a classical
computer, while the second step is performed on a simulated QC.

The Variational Quantum Eigensolver (VQE) implements the Rayleigh-Ritz variational principle for analysing the energy E
for a quatum state |yi with respect to the ground state energy E0 of a given Hamiltonian Ĥ:

E = hy|Ĥ|yi � E0; Ĥ = Â
i

Ĥi (1)

The VQE is a classical-quantum hybrid algorithm where the trial function |yi is created in the qubit register by gate operations.
In a fully quantum HW calculation of the expectation value, the energy is estimated via quantum state tomography of each of the
Pauli operator products of Ĥi. In quantum simulations on an HPC, the state vector is available classically, and the expectation
value of H can be evaluated directly. The VQE scales poorly for large molecules due to repeated measurements/tomography
to form the expectation value of the Hamiltonian terms, hy|Ĥi|yi. Nevertheless, the VQE is the common approach for small
molecules with present NISQ HW. The phase-estimation algorithm (PEA) scales better, but involves much deeper circuits, and
puts much higher demands on the coherence time of the quantum register [3, 4].

The main steps in our VQE calculations are in principle as follows: We start from a unitary coupled cluster (UCC) ansatz of
the quantum state |yi with variational parameter |qi:

|y(q)i= Û(q)
��yre f

↵
= eT (q)�T (q)† ��yre f

↵
(2)

where
��yre f

↵
is, in our approach, the Hartree-Fock (HF) ground state. The ansatz can be expanded:

T (q) = T1 +T2 +T3 + ....+TN (3)

producing 1,2,3, ....,N electron-hole pairs from the N-electron reference state. Explicitly, for T1 and T2:

T1 = Â
pq

t(q)pq c+p cq; T2 = Â
pqrs

t(q)pqrs c+p c+q crcs (4)

with c+i and ci, fermionic creation and annihilation operators, respectively. The series of terms generates in principle all possible
configurations for FCI, producing all possible ground and excited state correlations. The terms shown generate single (S)
and double (D) excitations and produce the parametrized UCCSD trial-state approximation that we are using. In particular
t(q)pq = qi and t(q)pqrs = q j for all combinations of the indices pqrs.

The UCCSD trial-function |y(q)i with fermionic operators must now be mapped onto qubit spin operators. Common trans-
formations are the Jordan-Wigner (JW), Bravyi-Kitaev (BK) and Parity encodings, all designed to impose the anticommutation
rules. The original UCCSD exponential is then expanded into exponentials of large numbers of products of Paul spin-operators
acting on qubits. The parametrized initial trial state is finally constructed through entangled quantum circuits: combinations of
parametrized single-qubit rotation gates and entangling CNOT gates (Fig. 1). All this results in a state vector |y(q)i for the trial
state.

3

FIG. 1: Quantum circuits for operator exponentiation: (a) e�iqs1zs2z ; (b) e�iqs1zs2zs3z

The fermionic operators c+i and ci in the molecular Hamiltonian

Ĥ = Â
pq

hpqc+p cq +
1
2 Â

pqrs
hpqrsc+p c+q crcs (5)

must also be expanded in products of Pauli spin-operators using one transformation of the listed above, namely JW, BK and
Parity, resulting in the generic interaction form:

Ĥ = Â
ia

hia sia + Â
ia, jb

hia, jb sia s jb + Â
ia, jb ,kg

hia, jb ,kg sia s jb skg + ....... (6)

where sia corresponds to the Pauli matrix sa for a 2 {0,x,y,z}, acting on the i-th qubit.
In practice, we start from a classical HF description and remove states that have the wrong spin and do not conserve the

number of electrons (tapering, Z2-symmetry [9, 10]). After fermion-to-spin operator Parity mapping we then Trotterize the
UCC-operator (Eq. 2).

The expectation value of the Hamiltonian Âi Ĥi can then be calculated in two ways: (1) State-vector approach: direct calcu-
lation of Âi hy|Ĥi|yi by matrix operations (Qiskit state-vector backend); (2) Measurement approach: generating an ensemble
of identical trial states and measuring the Pauli operators of the Hamiltonian terms Ĥi (QASM backend; or experimental q-HW
backends).

As a simplest possible example, in the case of the 2-electron hydrogen molecule (i = 1,2), one gets:

Ĥ = g01+g1s10 +g2s20 +g3s10s20 +g4s1xs2x +g5s1ys2y (7)

where g1 �g5 are coefficients describing the weights of the terms in the transformed Hamiltonian. The UCCSD approximation
creates the trial function via double excitations from the Hartree-Fock (HF) mean-field reference state |01>, building-in electron
pair-correlation effects:

|y(q)i= Û(q)
��yre f

↵
= e�iqs1xs2y |01i (8)

The Hartree-Fock reference state |01> is created through a bit flip operation: s1z|00i! |01i. The UCCSD-generating quantum
circuit is given by a CNOT, a parametrized Rz(q) rotation, and another CNOT, generating the unitary operator in Fig. 1(a). The
desired form in the UCCSD ansatz for |y(q)i in Eq. 2 is obtained by additional single-qubit rotation gates. In general, for
systems with more that 2 electrons, the ansatz and the Hamiltonian will involve products with operators involving more than two
qubits. A product of 3 operators is shown in Fig. 1(b) and is generalized to exponents with tensor products of Pauli operators for
n qubits, which generates quantum circuits with n-qubit operations.

In the H2-case there is only one single variational parameter, and the optimization of the energy is trivial. For larger molecules,
the number of UCCSD variational parameters can be very large (see Tables I-IV), and the optimization loop becomes classically
intractable.

In summary, our practical approach is as follows:

• Basic program package: VQE implemented by Qiskit Aqua [9].

• Initial/reference state: Hartree-Fock (HF) provided by PySCF.

• HF wave-functions calculated in general with a Pople minimal orbital basis STO-6G. However, to achieve higher accuracy,
in several cases we used 6-31G, and in a few cases 6-31+G* and 6-31++G*. Those basis sets give better accuracy, but
also require a much greater number of qubits.

• Variational ansatz: Trotterized Unitary Coupled Cluster Singles and Doubles (UCCSD). We have chosen to systematically
use the UCCSD, rather than experimenting with "hardware-efficient" trial functions [12]. UCCSD represents a funda-
mental QChem benchmark, providing a systematic approximation of many-electron correlations beyond the Hartree-Fock
mean-field level. In our view, the UCCSD is an important starting point for developing HW-efficient approaches.

Quantum Approximate
Optimization Algorithm

Quantum Variational 
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with expectation value:

< Ĥ > =
X

i↵

hi↵ < �i↵ > +
X

i↵,j�

hi↵,j� < �i↵�j� > +.... (93)

The coe�cients are determined using a classical quantum chemistry package.

The expectation value of a tensor product < �i↵�j��k�..... > of an arbitrary number

of Pauli operators can be estimated by local measurement of each qubit [?], independent

measurements that can be performed in parallel. The advantage of this approach [?] is

then that the coherence time to make a single measurement after preparing the state is

O(1). The disadvantage relative to the PEA is that the scaling in the total number of

operations as a function of the desired precision is quadratically worse [?]. The scaling

will also reflect the number of state preparation repetitions required, whereas in PEA

the number of state preparation steps is constant.

In the end, however, the QEE dramatically reduces the coherence time requirement,

while maintaining an exponential advantage over the classical case by adding only a

polynomial number of repetitions with respect to QPE [?].

2.0.1. Quantum variational eigensolver The quantum variational eigensolver (QVE)

[?] is based on the Ritz variational principle, finding the minimum of the expectation

value of the Hamiltonian under variation of the trial state function: (i) prepare the trial

state | i; (ii) compute the Rayleigh-Ritz quotient < Hi >= h |Ĥi| i/h || i of all the
terms in the Hamiltonian using the QEE as a subroutine; (iii) calculate

P
i i >; (iv)

compare the resulting energy with the previous runs and feed back new parameters for

the trial state. Note that the only step that is quantum is step (iii) - the other steps

are prepared using a classical computer.

E = h |Ĥ| i/h || i � E0; Ĥ =
P

i Ĥi

x

E(✓) = h (✓)|Ĥ| (✓)i � E0; Ĥ =
P

i Ĥi

x

| (✓)i = eT (✓)�T (✓)† | refi (94)

x

| i = eT�T
† | refi (95)

x

T (✓) = T1 + T2 + T3 + ....+ TN (96)
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FIG. 1: Quantum circuits for operator exponentiation: (a) e�iqs1zs2z ; (b) e�iqs1zs2zs3z

The fermionic operators c+i and ci in the molecular Hamiltonian
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must also be expanded in products of Pauli spin-operators using one transformation of the listed above, namely JW, BK and
Parity, resulting in the generic interaction form:

Ĥ = Â
ia

hia sia + Â
ia, jb

hia, jb sia s jb + Â
ia, jb ,kg

hia, jb ,kg sia s jb skg + ....... (6)

where sia corresponds to the Pauli matrix sa for a 2 {0,x,y,z}, acting on the i-th qubit.
In practice, we start from a classical HF description and remove states that have the wrong spin and do not conserve the

number of electrons (tapering, Z2-symmetry [9, 10]). After fermion-to-spin operator Parity mapping we then Trotterize the
UCC-operator (Eq. 2).

The expectation value of the Hamiltonian Âi Ĥi can then be calculated in two ways: (1) State-vector approach: direct calcu-
lation of Âi hy|Ĥi|yi by matrix operations (Qiskit state-vector backend); (2) Measurement approach: generating an ensemble
of identical trial states and measuring the Pauli operators of the Hamiltonian terms Ĥi (QASM backend; or experimental q-HW
backends).

As a simplest possible example, in the case of the 2-electron hydrogen molecule (i = 1,2), one gets:

Ĥ = g01+g1s10 +g2s20 +g3s10s20 +g4s1xs2x +g5s1ys2y (7)

where g1 �g5 are coefficients describing the weights of the terms in the transformed Hamiltonian. The UCCSD approximation
creates the trial function via double excitations from the Hartree-Fock (HF) mean-field reference state |01>, building-in electron
pair-correlation effects:

|y(q)i= Û(q)
��yre f

↵
= e�iqs1xs2y |01i (8)

The Hartree-Fock reference state |01> is created through a bit flip operation: s1z|00i! |01i. The UCCSD-generating quantum
circuit is given by a CNOT, a parametrized Rz(q) rotation, and another CNOT, generating the unitary operator in Fig. 1(a). The
desired form in the UCCSD ansatz for |y(q)i in Eq. 2 is obtained by additional single-qubit rotation gates. In general, for
systems with more that 2 electrons, the ansatz and the Hamiltonian will involve products with operators involving more than two
qubits. A product of 3 operators is shown in Fig. 1(b) and is generalized to exponents with tensor products of Pauli operators for
n qubits, which generates quantum circuits with n-qubit operations.

In the H2-case there is only one single variational parameter, and the optimization of the energy is trivial. For larger molecules,
the number of UCCSD variational parameters can be very large (see Tables I-IV), and the optimization loop becomes classically
intractable.

In summary, our practical approach is as follows:

• Basic program package: VQE implemented by Qiskit Aqua [9].

• Initial/reference state: Hartree-Fock (HF) provided by PySCF.

• HF wave-functions calculated in general with a Pople minimal orbital basis STO-6G. However, to achieve higher accuracy,
in several cases we used 6-31G, and in a few cases 6-31+G* and 6-31++G*. Those basis sets give better accuracy, but
also require a much greater number of qubits.

• Variational ansatz: Trotterized Unitary Coupled Cluster Singles and Doubles (UCCSD). We have chosen to systematically
use the UCCSD, rather than experimenting with "hardware-efficient" trial functions [12]. UCCSD represents a funda-
mental QChem benchmark, providing a systematic approximation of many-electron correlations beyond the Hartree-Fock
mean-field level. In our view, the UCCSD is an important starting point for developing HW-efficient approaches.
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experiments were polyimine (pI) (Fig. 1). These have a flexible
C–C bonded backbone and =NH groups that provide for in-
terchain and intrachain hydrogen bonding. These polymers may
be present on Titan and escaped detection thanks to observa-
tional conditions that make it difficult to identify them spectro-
scopically (5). Not much is known about them; the only theoretical
studies, conducted decades ago, were of isolated polymers and
dimers, and used methodologies whose accuracy is now greatly
surpassed (13, 14). This contrasts with substituted polyimines/
poly-isocyanides, whose synthesis and conformation have been
extensively studied experimentally, in part because their helical
structures gives them practical and potential importance in
electronics, biosensing, and tailored catalysis (14–16).
Here, we use density functional theory (DFT) to computation-

ally explore potential polymorphs (conformations) and the elec-
tronic structure of pI. A striking coupling between conformation

and electronic band gap is identified, indicating that pI may be able
to absorb a wide spectrum of photons, including those available at
Titan’s surface. This source of energy could potentially be used to
catalyze chemistry relevant to prebiotic evolution, even in the
absence of water.

Results
The potential conformational space of pI is large. We have used
a combination of plane-wave–based DFT and structure pre-
diction algorithms and molecular calculations of isolated 20-mer
models to explore a small but illustrative subset of polymorphs,
differentiated primarily by their carbon backbone N=C–C=N
dihedral angles. Starting from the extreme of a planar chain, we
computationally scanned increasingly coiled conformations,
thereby exploring the most important degree of freedom governing
pI’s structural and electronic properties (Fig. 2). Infinite chains
were studied, and energies per unit HCN were computed and
found to be close in energy for all of the polymorphs (∼1–2 kcal/mol
HCN; Table 1). We also calculated the packing of each chain in
representative 3D lattices. The packed chains had lower energies
due to the additional intermolecular =NH. . .N interactions, but the
relative energies were still close. Moreover, the electronic structure
was only marginally affected. Therefore, for clarity, we focus on
the isolated chains.
Although the differences between the energies of the different

polymorphs reach below the accuracy of the used DFT methodol-
ogy, the results show that the thermodynamic and kinetic confor-
mational flexibility allowed by the carbon–carbon single-bonded

Fig. 1. Lewis structure representation of pI. A flexible single-bonded
carbon backbone and complementary intrachain and interchain hydro-
gen bonding allow for multiple competing 1D conformations and 3D
polymorphs.

Fig. 2. Investigated polyimine single chains 3–8. Unit cell width and nearest N–N distances are shown in angstoms.
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That’s All Folks!

Questions? Comments?


