The pan-European supercomputer of the North

NLCG meeting October 18 2020 - Sebastian von Alfthan CSC - IT Center for Science

18.11.2020

Outline

- The long story of LUMI and EuroHPC (made short)
- The opportunities and benefits for research, development and innovation offered by LUMI
- How to prepare for LUMI?
- Q&A

The EuroHPC Initiative

- The EuroHPC Joint Undertaking will pool EU and national resources in highperformance computing (HPC)
 - oacquiring and providing a world-class supercomputing and data infrastructure for Europe's scientific, industrial and public users

osupporting an ambitious research and innovation agenda

- The EuroHPC declaration has been signed by **32 European countries**
- The first generation of EuroHPC systems announced in June 2019

 o3 pre-exascale systems to Finland, Italy and Spain
 o5 petascale systems to Czech Republic, Bulgaria, Luxembourg, Portugal and Slovenia
- Next generations of systems planned for 2023-2024 and 2026-2027

LUMI Consortium

• Unique consortium of 10 countries with strong national HPC centers

Countries which have signed the EuroHPC Declaration LUMI Consortium countries

CSC Datacenter in Kajaan

- The resources of LUMI will be allocated per the investments
- The share of the EuroHPC JU (50%) will be allocated by a peer-review process (cf. PRACE Tier-o access) and available for all European researchers
- The shares of the LUMI partner countries will be allocated by local considerations and policies – seen and handled as extensions to national resources

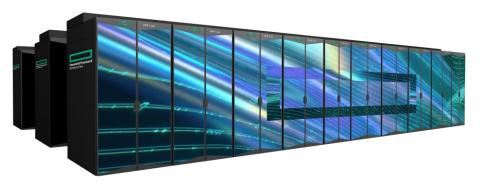
LUMI Datacenter in Kajaani

100% hydroelectric energy up to 200 MW

Very reliable power grid: Only one 2 min outage in 38 years

100% free cooling available, PUE 1.03

Waste heat reuse: effective energy price $35 \notin MWh$, negative CO₂ footprint: 13500 tons reduced every year

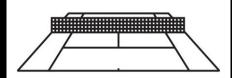

/h, year

Extreme connectivity: Kajaani DC is a direct part of the Nordic backbone. 4x100 Gbit/s to GÉANT in place, can be easily scaled up to multi-terabit level

Elevated security standards guaranteed by ISO27001 compliancy

Benefits and opportunities for R&I by LUMI

LUMI: one of the fastest supercomputers in the world

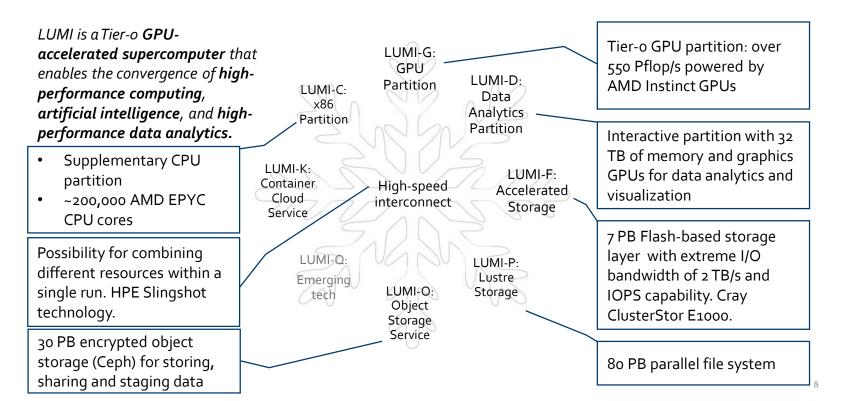

- LUMI will be an HPE Cray EX supercomputer manufactured by Hewlett Packard Enterprise
- Peak performance over **550 petaflop/s** makes the system one of the world's fastest
 - Fastest today is Fugaku supercomputer in Japan with 513 petaflop/s, second fastest Summit in USA with 200 petaflop/s)

1 system 550 Pflop/s Peak Performance

Computing power equivalent to

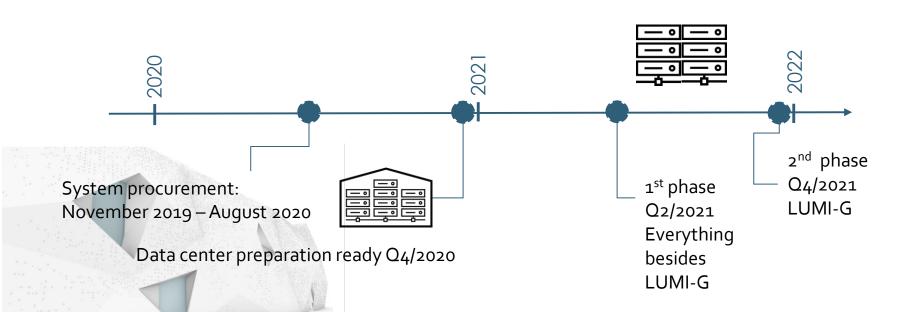
1 500 000

Modern laptop computers



Size of a tennis court

Modern platform for High-performance computing, Artificial intelligence, Data analytics


Based on GPU technology

LUMI, the Queen of the North

LUMI Timeline

Enhanced user experience

- In addition to traditional CLI, we wish to support high-level interfaces on LUMI, i.e. seamlessly integrate Jupyter Notebooks, Rstudio and such to back-end to LUMI
 - Ultimately the LUMI resources being an extension to your laptop
- Large software budget will enable a rich stack of pre-installed software
- Datasets as a Service: curated large reference datasets available and maintained
- Interactive resources for steering batch job simulations
- Exhaustive user support by the LUMI User Support Team

Enterprise use of LUMI resources

- Up to 20% of LUMI's capacity is reserved for industry and SMEs
- New RDI opportunities are available utilizing world class HPC resources combined with data-analytics and AI
- Novel co-operation possibilities for enterprises with universities and research centers
- Business Finland's Business AI program provides free-of-charge computing resources for startups and SMEs for significant research projects
- Computing resources can also be used in co-innovation projects of companies and academia
 - Resources arranged through academic PIs in these cases

How to prepare for LUMI?

LUMI capacities, a brief summary

- Extreme computing capacity based on LUMI-G and LUMI-C partitions
 - LUMI queue policies will support jobs from single CPU core or a GPU to 50% of the nodes, even 100% with special arrangements
 - Jobs can combine resources from both sides within a workflow, even within the same executable
- Interactive use (visualization, data analysis, pre/post processing,...) on LUMI-D
- Broad stack of pre-installed scientific software, databases and datasets, both commercial and community
- Sharing datasets over LUMI-O service
- Running microservices on LUMI-K
- Exploring the quantum computing world with LUMI-Q

Getting LUMI resources

- LUMI resources are allocated in terms of GPU-hours, CPU-core-hours, and storage hours
 - Each project applies and gets a combination of this
 - No dedicated hardware all users can access the whole system within the batch job policies
 - All countries receive shares of these pools per their share of the TCO
- Researchers affiliated to Finland can apply from the EuroHPC allocation or from Finland's allocation
 - CSC will be your first point of contact
 - Similar schemes in other consortium member countries
- Resources brokered in terms of
 - Preparatory access projects (XS) single-PI
 - Development access projects (S) single-PI
 - General access (Tier-1) projects (M) single-PI
 - Extreme scale (Tier-o) projects (L) single-PI, should be mostly GPU hours
 - Community access projects (XL) multi-PI, multi-year

How to prepare for LUMI?

- Thinking projects and use cases for Lumi
 - Cases for Tier-o grand challenges
 - Combining simulation and AI methods within the same workflow
- There is a vast pool of GPU-enabled community codes
 - See if your favorite software suite already has been enabled- if not, consider moving to a competing package that is
 - Perhaps only part of the application needs to be GPU-enabled, rest running on the CPU nodes
- Modernizing applications and GPU-enabling them
 - "even if it works, fix it"

LUMI programming environment

- ROCm (Radeon Open Compute)
 - Usual set of accelerated scientific libraries (BLAS, FFT etc)
 - Usual machine leaning frameworks and libraries (Tensorflow, PyTorch etc)
 - Compilers for the GPUs
- Cray Programming Environment (CPE) stack
 - Cray Compiling Environment, LibSci libraries, CrayPAT, debuggers,...
 - CPE Deep Learning Plugin

Preparing applications and workflows LUM for LUMI

- Remember the possibility of combining CPU and GPU nodes within one job perhaps only part of the application needs to be GPU-enabled
- Refactorize and modernize your code
- Employ modern frameworks and libraries
- Write a well-scaling MPI code first and accelerate it with GPUs, not vice versa
- Convert CUDA codes to HIP, OpenACC codes to OpenMP
 - LUMI 1st phase will come with a porting platform
 - HIP porting can be done already now on Puhti-AI

Concluding remarks

- EuroHPC era: Unprecendent amount of computational resources and capabilities available for European research & innovation
 - Complemented by competence building and user support activities
 - Synergestic with the up-to-date national data infrastructure
- LUMI, the Queen of the North: leadership-class resource designed for a broad range of user communities and workloads, with an enhanced user experience
 - LUMI will be a GPU system, which needs some preparatory work but it will be a robust production system, and not experimental or esoteric in any manner
- Modernizing HPC applications for harnessing the largest systems is not trivial, and needs a lot of focused effort but it will pay off
 - It is time already to start preparing for the LUMI era

Dr Pekka Manninen

Director

LUMI Leadership Computing Facility

CSC – IT Center for Science Ltd

pekka.manninen@csc.fi tel. +358 50 3812 831

Follow us

Twitter: <u>@LUMIhpc</u>

LinkedIn: LUMI supercomputer

YouTube: LUMI supercomputer

www.lumi-supercomputer.eu contact@lumi-supercomputer.eu

The acquisition and operation of the EuroHPC supercomputer is funded jointly by the EuroHPC Joint Undertaking, through the European Union's Connecting Europe Facility and the Horizon 2020 research and innovation programme, as well as the of Participating States FI, BE, CH, CZ, DK, EE, IS, NO, PL, SE.

