The IGM as a probe of the nature of dark matter

Observable of the IGM

Sensitive to fluctuations, along the line-of-sight, on scales $\sim 0.1-10~{
m Mpc/h}$

Sensitive to density fluctuations, along the line-of-sight, on scales $\sim 0.1-10~{
m Mpc/h}$

small scales

Sensitive to wildly non-linear density fluctuations, along the line-of-sight, on scales $\sim 0.1-10~{
m Mpc}/{
m s}$

Cold Dark Matter (CDM):

heavy, non-interactive particle(s) \rightarrow WIMPs

Cold Dark Matter (CDM):

heavy, non-interactive particle(s) \rightarrow WIMPs

CDM problems of small-scale physics:

- Missing satellites
- Core/Cusp problem
- ...

Cold Dark Matter (CDM):

heavy, non-interactive $\mathsf{particle}(\mathsf{s}) \to \mathsf{WIMPs}$

CDM problems of small-scale physics:

- Missing satellites
- Core/Cusp problem
- ...

 \rightarrow Alternative DM models (Warm DM, Fuzzy DM, Self-interacting DM, ...)

Cold Dark Matter (CDM):

heavy, non-interactive $\mathsf{particle}(\mathsf{s}) \to \mathsf{WIMPs}$

CDM problems of small-scale physics:

- Missing satellites
- Core/Cusp problem
- ...

 \rightarrow Alternative DM models (Warm DM, Fuzzy DM, Self-interacting DM, ...)

Where to look for DM?

Non-CDM erases small scale structure

Warm Dark Matter (WDM):

Free-streaming of DM particles (From the time they decouple until they become non-relativistic)

Fuzzy Dark Matter (FDM): de-Broglie wavelength of ultra-light DM scalar

 \implies erases small scale structure

Typical $\lambda_{\rm FS} \sim {\rm Mpc/h}$

Typical DM particle mass from local small-scale structure $m_{\rm WDM} \sim 2 - 3 \text{ keV}$ (WDM) $m_{\rm FDM} \sim 1 - 10 \times 10^{-22} \text{ eV}$ (FDM)

Vid Iršič

IGM & DM

$$f = C \cdot \bar{F} \left(1 + \delta_F \right) + n$$

$\underbrace{\mathsf{Matter }}_{\mathsf{3D: Matter Power spectrum }} P_m(k,z) \leftrightarrow \mathsf{Lyman}-\alpha$

Wavelength λ [h⁻¹ Mpc] 1000 100 104 10 105 P(k) [(h⁻¹ Mpc)³] 104 1000 Current power spectrum 100 Cosmic Microwave Background • SDSS galaxies +Cluster abundance 10 • Weak lensing ▲Lyman Alpha Forest 0.001 0.01 0.1 10 Wavenumber k [h/Mpc]

1D: small scales, gas physics, m_{wdm}, \ldots

$F(\rho_q)$: Complex non-linear relationship

Flux fluctuations in ${\rm Ly}\alpha$ forest trace matter density fluctuations

 $F = \exp\left[-\tau(\delta)\right]$

- Intergalactic medium (IGM) is mainly highly ionized hydrogen gas (Gunn & Petterson)
- UV photo-ionization in equilibrium with recombination
- Data & simulations suggest the state of IGM: 10^4 K and low densities $10^{-4}\ cm^{-3}$
- Equation of state of the IGM can be approximately described by $T\propto
 ho^\gamma$

Highly nonlinear relation between flux and density

$$F = \exp\left[-A\left(1+\delta\right)^p\right]$$

But that is not all... Temperature + peculiar velocity effects:

$$F(v) = \exp\left[-A(\bar{z};\Omega_i) \int ds \left(1 + \delta_b(s)\right)^2 T(s)^{-0.7} \Gamma_{\gamma,HI}^{-1} V\left(v - s - v_p(s);T(s)\right)\right]$$
UV photoion. equil. is 2 body process
and has T depend.
Vid Iršič IGM & DM

10

$F(\rho_q)$: Complex non-linear relationship

WDM mass constraints

WDM mass constraints

FDM mass constraints

Vid Iršič

Simple model:

- instantaneous H reionisation at $z_{\rm rei} = 9$
- HI photo-heating, depends on spectral index of UV intensity $\alpha_{bk} = 0$
- Compton cooling + adiabatic expansion

 $T_0(z=5.0) = 12,400 \text{ K}$

McQuinn & Upton Sanderback (2015), Upton Sanderback et al. (2016)

Other things assumed:

- *T* fluctuations increase above this temperature
- He I and He II photo-heating only increases the temperature
- H II, He III recombination cooling decreases temperature by $\sim few~\%$
- Planck Λ CDM Cosmology
- $T_{rei} = 10,000 \text{ K}$ (more realistic would be 20,000 K)

Simple model:

- instantaneous H reionisation at $z_{\rm rei}=9$
- HI photo-heating, depends on spectral index of UV intensity $\alpha_{bk}=2$
- Compton cooling + adiabatic expansion

 $T_0(z=5.0)=8,200 \text{ K}$

McQuinn & Upton Sanderback (2015), Upton Sanderback et al. (2016)

Other things assumed:

- *T* fluctuations increase above this temperature
- He I and He II photo-heating only increases the temperature
- H II, He III recombination cooling decreases temperature by $\sim few~\%$
- Planck Λ CDM Cosmology
- $T_{rei} = 10,000 \text{ K}$ (more realistic would be 20,000 K)

Simple model:

- instantaneous H reionisation at $z_{\rm rei}=15$
- HI photo-heating, depends on spectral index of UV intensity $\alpha_{bk}=2$
- Compton cooling + adiabatic expansion

 $T_0(z=5.0)=6,900 \text{ K}$

McQuinn & Upton Sanderback (2015), Upton Sanderback et al. (2016)

Simple model:

- instantaneous H reionisation at $z_{\rm rei} = 15$
- HI photo-heating, depends on spectral index of UV intensity $\alpha_{bk} = 3$
- Compton cooling + adiabatic expansion

 $T_0(z=5.0)=6,000$ K

McQuinn & Upton Sanderback (2015), Upton Sanderback et al. (2016)

- T fluctuations increase above this temperature
- He I and He II photo-heating only increases the temperature
- H II, He III recombination cooling decreases temperature by $\sim {\rm few}~\%$
- Planck Λ CDM Cosmology
- $T_{rei} = 10,000 \text{ K}$ (more realistic would be 20,000 K)

Simple model:

- instantaneous H reionisation at $z_{\rm rei}=20$
- HI photo-heating, depends on spectral index of UV intensity $\alpha_{bk} = 3$
- Compton cooling + adiabatic expansion

 $T_0(z=5.0)=5,700$ K

McQuinn & Upton Sanderback (2015), Upton Sanderback et al. (2016)

- T fluctuations increase above this temperature
- He I and He II photo-heating only increases the temperature
- H II, He III recombination cooling decreases temperature by $\sim few~\%$
- Planck Λ CDM Cosmology
- $T_{rei} = 10,000 \text{ K}$ (more realistic would be 20,000 K)

Overlapping constraints with different probes

with T. Kobayashi (SISSA)

General non-CDM models

General transfer function for DM: $T(k) = \sqrt{\frac{P_{nCDM}}{P_{CDM}}} = \left[1 + (\alpha k)^{\beta}\right]^{\gamma},$

E.g. for thermal WDM: $\beta = 2.24$, $\gamma = -4.46$, $\alpha \propto 0.049 \left(\frac{m_{\rm WDM}}{1 \text{ keV}}\right)^{-1.11} h^{-1} \text{ Mpc}$

with R. Murgia (SISSA)

Constraints on the shape of the nCDM T(k)

With conservative thermal history:

 $m_{\rm WDM} > 2.1 \text{ keV} (2\sigma)$ (HIRES/MIKE) $\rightarrow m_{\rm WDM} > 3.5 \text{ keV} (2\sigma)$ (HIRES/MIKE + XQ-100)

With conservative thermal history:

 $m_{WDM} > 2.1 \text{ keV} (2\sigma)$ (HIRES/MIKE) $\rightarrow m_{WDM} > 3.5 \text{ keV} (2\sigma)$ (HIRES/MIKE + XQ-100)

New high-z QSOs in the future:

DESI (14,000 sq. deg.) ~ 25 QSO spectra at z > 4.0 (and m < 18.5) SkyMapper (17,200 sq. deg.) ~ 30 QSO spectra at z > 4.0 (and m < 18.5) LSST (30,000 sq. deg.) ~ 55 QSO spectra at z > 4.0 (and m < 18.5)

With conservative thermal history:

 $m_{\text{WDM}} > 2.1 \text{ keV} (2\sigma) (\text{HIRES/MIKE}) \rightarrow m_{\text{WDM}} > 3.5 \text{ keV} (2\sigma) (\text{HIRES/MIKE} + XQ-100)$ QSO LF Manti et al. 2016

DESI (14,000 sq. deg.) ~ 25 QSO spectra at z > 4.0 (and m < 18.5) SkyMapper (17,200 sq. deg.) ~ 30 QSO spectra at z > 4.0 (and m < 18.5) LSST (30,000 sq. deg.) ~ 55 QSO spectra at z > 4.0 (and m < 18.5) $\sim 8 h$ exposure time @ Keck HIRES

With conservative thermal history:

 $m_{WDM} > 2.1 \text{ keV } (2\sigma)$ (HIRES/MIKE) $\rightarrow m_{WDM} > 3.5 \text{ keV}$ (2σ) (HIRES/MIKE + XQ-100) which is a state of the state of

SkyMapper (17,200 sq. deg.) ~ 30 QSO spectra at z > 4.0 (and m < 18.5)

LSST (30,000 sq. deg.) ~ 55 QSO spectra at z > 4.0 (and m < 18.5)

 $\sim 8 {
m h}$ exposure time @ Keck HIRES

 \rightarrow > 100 high-z (4 < z < 6) QSOs in \sim 5 yrs

With conservative thermal history:

LSST (30,000 sq. deg.) ~ 55 QSO spectra at z > 4.0 (and m < 18.5)

 $\sim 8 {
m h}$ exposure time @ Keck HIRES

ightarrow > 100 high-z (4 < z < 6) QSOs in \sim 5 yrs with ELTs ightarrow > 1000 QSOs

With conservative thermal history:

 $m_{WDM} > 2.1 \text{ keV } (2\sigma) \text{ (HIRES/MIKE)} \rightarrow m_{WDM} > 3.5 \text{ keV } (2\sigma) \text{ (HIRES/MIKE + XQ-100)}$ \downarrow New high-z QSOs in the future: DESI (14,000 sq. deg.) ~ 25 QSO spectra at z > 4.0 (and m < 18.5) SkyMapper (17,200 sq. deg.) ~ 30 QSO spectra at z > 4.0 (and m < 18.5) LSST (30,000 sq. deg.) ~ 55 QSO spectra at z > 4.0 (and m < 18.5) \downarrow \downarrow \downarrow \sim 8h exposure time @ Keck HIRES

ightarrow > 100 high-z (4 < z < 6) QSOs in \sim 5 yrs with ELTs ightarrow > 1000 QSOs

How much do we gain?

Simple forecast

With conservative thermal history:

1000 QSOs: $m_{\rm WDM} > 14.7 \text{ keV}$

Conclusions

- Lyman- α forest is a unique probe of the IGM (in both redshift range and small scales access)
- ROBUST CONSTRAINTS ON DM MODELS (e.g. WDM, FDM)
 - astro-ph/1702.01764, astro-ph/1703.04683
- WDM/FDM mass values from "local" Universe leads to unphysically small high-z temperature
- \bullet WDM/FDM parameter space greatly constrained: it is hard to solve missing satellite problem and satisfy Ly α constraints
- Possibility to study DM model extensions (e.g. Quantum Pressure for FDM, production mechanisms of WDM)
 - astro-ph/1708.00015, astro-ph/1806.08371, astro-ph/1809.09619
- Statistically dominated at high-z need more high quality QSO sightlines z>4.5

Problem of different smoothing scales

Vid Iršič

IGM & DM

@Reykjavik 28 / 19

Redshift evolution breaks the degeneracies

IGM & DM

@Revkjavik 28 / 19

Sensitive to fluctuations, along the line-of-sight, on scales $\sim 0.1-10~{\rm Mpc/h}$

small scales

Effect of HI reionization

