Fuzzy Dark Matter on Galactic Scales

Bodo Schwabe

(University of Göttingen)

credit: J.Veltmaat

FDM Structure Formation

H.-Y. Schive, T. Chiueh, and T. Broadhurst, Nature Physics, 2014

$$i\hbarrac{\partial\psi}{\partial t}=-rac{\hbar^2}{2ma^2}
abla^2\psi+mV\psi$$

$$abla^2 V = rac{4\pi G}{a}\delta
ho \qquad \quad \delta
ho = |\psi|^2$$

 $\lambda_{
m dB} \sim \hbar/m v_{
m vir} \sim (\hbar/m) (G
ho)^{-1/2} r^{-1}$

 $au_{
m dB} \sim \hbar/m v_{
m vir}^2$

FDM Solitonic core dynamics

- Formation
- Merger history
- Tidal disruption
- Equilibration in halo

FDM halo dynamics

• CDM velocity dispersion vs. FDM granular structure

FDM mass constraints

Formation and Mass Growth of Axion Stars in Axion Miniclusters

D.G. Levkov, A.G. Panin, I.I. Tkachev, Phys. Rev. Lett., October 2018

B. Eggemeier, J.C. Niemeyer, Phys. Rev. D, September 2019

Solitonic Core Mergers

BS, J. C. Niemeyer, and J. F. Engels, *Physical Review D*, August 2016.

Recipe for Core Evolution

BS, J. C. Niemeyer, and J. F. Engels, *Physical Review D*, August 2016. X. Du, C. Behrens, J. C. Niemeyer, and BS, *Physical Review D*, February 2017.

- Bound core mergers result in new solitonic core
- Cores merge rapidly once they overlap
 - Merger history is a series of binary mergers
- Only major mergers with mass ratio $\mu = M_{c1}/M_{c2} < eta/(1-eta)$ yield increased core mass $M_c = eta(M_{c1}+M_{c2})$
- Minor mergers and smooth accretion leave heavier core unchanged
- Numerically find $\beta \simeq 0.7$
- Recover the scaling relation $M_c \sim M_h^{1/3}$ found in cosmological simulations

Tidal Disruption of Subhalo Cores

X. Du, BS, J. C. Niemeyer, and D. Bürger, *Physical Review D*, March 2018.

$$M_c > 5.82 imes 10^8 \left[\mu_{
m min}(N_{
m sur})
ight]^{1/4} m_{22}^{-3/2} \left(rac{D}{
m kpc}
ight)^{-3/4} \left(rac{M_h}{10^{12} M_\odot}
ight)^{1/4} M_\odot$$

• Lightest satellites close to the Galactic center will only survive for more than one orbital time if the particle is as heavy as $m_{22} \simeq 20$.

Tidal core deformation

X. Du, BS, J. C. Niemeyer, and D. Bürger, *Physical Review D*, March 2018.

Tidally locked ellipsoid with decreasing mass and central density (-> smaller tidal radius) and increasing core radius and eccentricity

Structure of FDM halos

J. Veltmaat, J. C. Niemeyer, and BS, *Physical Review D*, August 2018.

FDM dwarf galaxy with baryons

J. Veltmaat, J. C. Niemeyer, and BS, to be published, October 2018.

Conclusions

- FDM structure formation similar to CDM on super deBroglie scales (except cut-off in initial power spectrum as for WDM)
 - Weakly non-linear probes like Lyman-alpha exclude $m < 10^{-21} \, {\rm eV}$
- **Distinguishing features of FDM:** Strong stochastic density fluctuations in halos on deBroglie length and time scales and formation of stable, oscillating soliton cores in center of halos
 - Heavier FDM mass can be best constrained on non-linear, galactic scales (soliton osc., soliton mergers, gravitational heating/cooling, tidal disruption,...)
 - Local FDM density important for experiments but not well constraint yet
 - -- Need further dedicated FDM simulations on galactic scales --