Cosmology of models with primordial power spectrum cutoff

Workshop on competing structure formation models University of Iceland October 1 2019

Francis-Yan Cyr-Racine

Department of Physics and Astronomy

University of New Mexico

Cosmology of models with primordial power spectrum cutoff

Cosmology of models with primordial power spectrum cutoff beyond WDM

The eternal degeneracy

• Disclaimer: The statistics of the matter distribution we observe today are influenced by both the primordial spectrum of fluctuations and the matter transfer function.

Chabanier et al. (2019)

• Not unreasonable to assume that this breaks down on small scales!

Power spectrum cutoff: Transfer function

• This talk: Focus on the transfer function and how it is influenced by the nature of dark matter.

$$P_{\rm m}(k) = T_{\rm m}^2(k) P_{\zeta}(k)$$

The transfer function characterizes the struggle between gravity and pressure.

$$\ddot{\delta} + [\text{Pressure } - \text{Gravity}] \ \delta = 0.$$

Dodelson (2003)

Power spectrum cutoff beyond warm dark matter

- Multiple physics could "pressurize" dark matter:
 - Large thermal velocity (WDM).
 - Coupling to relativistic species.
 - Boost from DM decay.
 - Quantum pressure.
 - Others?

Focus: Coupling dark matter to light relativistic species

• Example 1: Dark matter interacting with a massless photon.

$$\mathcal{L}_{\text{int}} = -(D^{\mu}\chi)^{\dagger} D_{\mu}\chi - m_{\chi}^{2}\chi^{\dagger}\chi, \quad \text{where} \quad D_{\mu} = \partial_{\mu} - ig_{\chi}\tilde{A}_{\mu}.$$

• Example 2: Dark matter interacting with a massless neutrino via a massive mediator.

$$\mathcal{L}_{\text{int}} = -g_{\chi}\phi_{\mu}\bar{\chi}\gamma^{\mu}\chi - \frac{1}{2}g_{\nu}\phi_{\mu}\bar{\nu}_{s}\gamma^{\mu}\nu_{s} - \frac{1}{2}m_{\phi}^{2}\phi_{\mu}\phi^{\mu} - \frac{1}{2}m_{\chi}\bar{\chi}\chi$$

$$\dots \text{and many more!}$$

$$m \text{ et al. 2001; Chen et al. 2001; Bechm et al. 2002; Green et al. 2004; Betschinger$$

DM

Hofmann et al. 2001; Chen et al. 2001; Bœhm et al. 2002; Green et al. 2004; Bertschinger 2006; Bringmann & Hofmann 2007; van den Aarssen et al. 2012; Cyr-Racine & Sigurdson 2013,

Francis-Yan Cyr-Racine, UNM

Phenomenology of dark matter-dark radiation (DR) interaction

Dark acoustic oscillation (DAO)

In the early Universe...

Cyr-Racine et al. (2016) Cyr-Racine et al. (2014) Cyr-Racine & Sigurdson (2013)

Phenomenology of dark matter-dark radiation interaction: Sound wave

Phenomenology of dark matter-dark radiation interaction: Sound wave

Francis-Yan Cyr-Racine, UNM

The structure of the dark matter density field is distinctly different

Cold DM

Warm DM

DM-DR interaction

Broad diversity of matter power spectrum shapes

What determines the shape of the matter power spectrum?

WDM example: The momentum distribution function determines the shape of the cutoff.

Venumadhav, Cyr-Racine+ (2015)

What determines the shape of the matter power spectrum?

DM-DR interaction: The dark matter drag visibility function determines the shape of the transfer function.

$$\kappa_{\chi} = -a \frac{4}{3} \frac{
ho_{\mathrm{DR}}}{m_{\chi}} \langle \sigma_{\mathrm{DM-DR}}
angle pprox - \left(\frac{z}{z_{\mathrm{D}}}
ight)^{n+1} \mathcal{H}$$

What determines the shape of the matter power spectrum?

A narrow dark matter drag visibility function maximizes differences between DM-DR models and WDM.

The correlation function: A more intuitive picture?

• In general, the phenomenology of these models is not described by a single parameters (i.e. half-mode mass).

Extra correlation in the density field

• Enhancement beyond CDM?

What about the halo mass function?

• Mass variance is seems to suggest that this is a 3-scale problem.

Non-linear evolution of DAOs

• Mode-coupling erases acoustic oscillations over time

Bose et al. (2019)

Non-linear evolution of DAOs

• They might survive long-enough to be observed at high redshifts

Bose et al. (2019)

What about the halo mass function?

• DAO: Sowing confusion in the halo mass function

What about the halo mass function?

• We might already have seen this in simulations!

Buckley et al. (2014)

Halo mass function: Weak DAO case

• We might already have seen this in simulations!

Samei et al. (2019)

A comment on halo concentration

• A DAO-like power spectrum cutoff could have an interesting effect on the mass-concentration relation

Applications, or why do we care?

This kind of DM physics could help alleviate cosmological tensions

This kind of DM physics could help alleviate cosmological tensions

Cyr-Racine et al. (2013)

Exploring degeneracies between selfinteraction and a cutoff

Vogelsberger et al. (2016)

Exploring degeneracies between selfinteraction and a cutoff

Drlica-Wagner et al. (2019)

Exploring degeneracies between selfinteraction and a cutoff

Drlica-Wagner et al. (2019)

Conclusions

- DM-DR interaction models can make quite diverse predictions from the matter power spectrum and halo mass function.
- In the strong DAO case, these predictions can be quite distinct as compared to either WDM or CDM, especially for the halo mass function.
- In general, these models are also self-interacting, and are thus important testbeds for studying the interplay between a cutoff and self-interaction.

Thank you!