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The eternal degeneracy
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• Disclaimer: The statistics of the matter distribution we observe today 
are influenced by both the primordial spectrum of fluctuations and 
the matter transfer function.  

• Not unreasonable to assume that this breaks down on small scales! 

Pm(k) = T 2
m(k)P⇣(k)

Chabanier et al. (2019)

Usually assumed to 
be nearly scale 

invariant. 



Power spectrum cutoff: Transfer function
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• This talk: Focus on the transfer function and how it is influenced by 
the nature of dark matter.    

Pm(k) = T 2
m(k)P⇣(k)

Dodelson (2003)

The transfer function characterizes the 
struggle between gravity and pressure. 

PRELUDE 181 

Pressure 

Figure 7.1. Gravitational instability. Mass near an overdense region is attracted to the cen-
ter by gravity but repelled by pressure. If the region is dense enough, gravity wins and the 
overdensity grows with time. 

The F = ma of gravitational instability is the equation governing overdensities 
6. Schematically, it reads 

6 + [Pressure - Gravity] ^ = 0. (7.1) 

These basic forces, depicted in Figure 7.1, act in opposite directions. Gravity acts 
to increase overdensities, grabbing more matter into the region. Since there are 
more particles in an overdense region, random thermal motion causes a net loss of 
mass in an overdense region. Therefore, if pressure is strong, inhomogeneities do 
not grow. As indicated by the cartoon equation (7.1), if pressure is low, S grows 
exponentially; if it is large, 6 oscillates with time. 

We will see many manifestations of the simple form of gravitational instability 
depicted in Eq. (7.1). Different ambient cosmological conditions alter the growth 
rate. For example, in a matter-dominated universe, 6 grows only as a power of 
time, not exponentially, whereas in a radiation-dominated universe, the growth is 
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• Multiple physics could 
“pressurize” dark matter:

• Large thermal velocity 
(WDM).

• Coupling to relativistic 
species.

• Boost from DM decay.

• Quantum pressure.

• Others?

4.3 Non-WIMP dark matter 17
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Figure 4-7. The landscape of dark matter candidates [from T. Tait].

Figure 4-8. The range of dark matter candidates’ masses and interaction cross sections with a nucleus of
Xe (for illustrative purposes) compiled by L. Pearce. Dark matter candidates have an enormous range of
possible masses and interaction cross sections.

Community Planning Study: Snowmass 2013
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Focus: Coupling dark matter to light 
relativistic species
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where pDR is the incoming DR momentum. Assuming that the opacities are pure power laws of redshift [implying
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where !DR ⌘ ⌦DRh
2, {g

i

} represents the set of coupling constants appearing in a given dark matter model, {h
i

} is
a set of other internal parameters such as mediator mass and number of internal degrees of freedom, and we remind
the reader that ⇠ = (TDR/TCMB)|z=0. With this latter definition, the physical DR energy density today is given
by !DR = (⌘DR/2)⇣⇠4⌦�

h2 ' 1.235 ⇥ 10�5⇣⌘DR⇠
4, where ⌦

�

is the energy density in photons today in unit of the
critical density of the Universe, and where ⇣ = 1 for bosonic DR and ⇣ = 7/8 for fermionic DR. Current temperature
and polarization measurements of the cosmic microwave background by the Planck satellite [82] constrain the energy
density in DR to be !DR < 2 ⇥ 10�6 at 95% confidence level.

From a practical perspective, the above e↵ective parametrization allows us to simplify the computation of the matter

power spectrum by directly passing the constant coe�cients
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to a Boltzmann

code, without having to hard code the functional form of the DM and DR opacities for each particle model. For
this purpose, we have modified the Boltzmann code CAMB [74] in order to pass to it the array of e↵ective ETHOS
parameters. This code is publicly available at https://bitbucket.org/franyancr/ethos_camb.

We emphasize that not all e↵ective parameters have a large impact on the matter power spectrum. For instance, the
subset {d

n

,m
�

, ⇠} is only used to determine the small DM adiabatic sound speed. Thus, these parameters have very
little impact on the actual structure of the linear matter power spectrum, except on very small scales. Similarly, the
subset {b
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,�
l

} only directly a↵ects the evolution of the DR and will have a subleading e↵ect on the DM distribution.
We do note that parameters like the a

n

, b
n

or d
n

can themselves implicitly depend on other physical parameters, such
as ⇠, but we use these coe�cients to characterize such dependence. We leave to future work the detailed study of the
impact of subdominant parameters on the matter power spectrum and focus here on the most relevant parameters
n

!DR, {an ,↵l

}
o

. We now illustrate this ETHOS mapping with some concrete examples.

1. DM-DR scattering via a massive mediator

We first consider a model where DM can interact with a massless sterile neutrino (⌫s) via a broken U(1) interaction
mediated by a massive vector boson �

µ

[33, 58, 83]. The interaction Lagrangian is given by
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in addition to the standard kinetic terms. Here, we have ⌘
�

= ⌘
⌫s = 2. The spin-summed matrix element for the

scattering ⌫s(p1) + �(p2) $ ⌫s(p3) + �(p4) is
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where we have simplified the result for the case of nonrelativistic DM in the last line. We then obtain
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Since TDR / (1 + z), we finally obtain

a
n3 = 0, a4 = (1 + zD)

4 3
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where ⇢̃crit ⌘ ⇢crit/h
2 ' 8.098 ⇥ 10�11eV4 is a constant independent of cosmological parameters. The current

temperature of the CMB is denoted by TCMB,0. We also have that x
�

(z) = 1. Thus, for this model the ETHOS
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2. Hidden-charged scalar DM

We now consider a complex scalar DM candidate charged under a new unbroken dark U(1) interaction mediated
by the gauge field Ã

µ

[42]. The interaction Lagrangian is given by
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Ã
µ

. (25)

Here, we have ⌘
�

= ⌘DR = 2. The spin-summed matrix element for the scattering �̃(p1) + �(p2) $ �̃(p3) + �(p4) is
[42]
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where we have taken the limit p1 ⌧ m
�

. The coe�cients of the Legendre expansion for the matrix element are then
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Using Eqs. (4) and (9), the DR and DM drag opacities and the angular coe�cients are
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The astute reader will recognize the above expressions as similar ones arise in the case of CMB photons scattering o↵
free electrons if polarization is neglected. The opacity coe�cients are then

a0 = 0, a1 = 0, a2 = (1 + zD)
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Here, the ETHOS mapping takes the form
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3. DM coupled to non-Abelian DR

Here, we focus on the scenario discussed in [62, 63] where DM is a Dirac fermion in the fundamental representation of
a dark SU(N)d gauge group. The non-Abelian gauge coupling gd is always assumed to be small such that confinement

• Example 1: Dark matter interacting with a  massless 
photon.

• Example 2: Dark matter interacting with a massless 
neutrino via a massive mediator.

…and many more!
Hofmann et al. 2001; Chen et al. 2001; Bœhm et al. 2002; Green et al. 2004; Bertschinger
2006; Bringmann & Hofmann 2007; van den Aarssen et al. 2012; Cyr-Racine & Sigurdson
2013,  
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Phenomenology of dark matter-dark radiation 
(DR) interaction

Cyr-Racine et al. (2016)
Cyr-Racine et al. (2014)
Cyr-Racine & Sigurdson (2013)

Dark Radiation 
Pressure

Dark Matter

Adapted from W. Hu

Potential Well

Dark acoustic oscillation (DAO)
In the early Universe…

3

recombination rate is larger than the expansion rate of
the Universe. The DR eventually decouples from the
atomic DM and begin to free-stream across the Universe.
We note that the order and the dynamics of the di↵er-
ent important transitions of the dark plasma (recombina-
tion, onset of DR free-streaming, atomic DM drag epoch,
DM thermal decoupling, etc.) can be very di↵erent than
in the standard baryonic case. We refer the reader to
Ref. [47] for more details.

To retain generality and emphasize that the PIDM sce-
nario we are considering is quite general, we shall refer
to the massless U(1)D “dark photons” simply as DR. For
simplicity, we also denote the lightest fermion as “dark
electron” (massme) while the heaviest fermion is referred
to as “dark proton” (mass mp). We assume that these
two oppositely-charged components come in equal num-
ber such that the dark sector is overall neutral under the
U(1)D interaction. This model is characterized by five
parameters which are the mass of the dark atoms mD,
the dark fine-structure constant ↵D, the binding energy
of the dark atoms BD, the present-day ratio of the DR
temperature (TD) to the cosmic microwave background
temperature ⇠ ⌘ (TD/TCMB)|z=0, and the fraction of the
overall DM density contained in interacting DM (here,
dark atoms), fint ⌘ ⇢int/⇢DM, where ⇢DM = ⇢int + ⇢CDM

and where ⇢int is the energy density of the interacting DM
component. These parameters are subject to the consis-
tency condition mD/BD � 8/↵2

D � 1, which ensures that
the relationship me + mp � BD = mD is satisfied. We
note that if the visible and dark sectors were coupled
above the electroweak scale, we naturally expect ⇠ ⇠ 0.5
[66]. A smaller value would either require new degrees of
freedom in the visible sector or that the two sectors were
never in thermal equilibrium in the first place.

The evolution of the dark plasma is largely governed
by the opacity ⌧�1

D of the medium to DR. For the model
we considered, the main contributions1 to this opacity
are Compton scatterings of DR o↵ charged dark fermions
and Rayleigh scatterings o↵ neutral dark atoms, that is,

⌧�1
D = ⌧�1

Compton + ⌧�1
R , (1)

where

⌧�1
Compton = anADMxD�T,D

"
1 +

✓
me
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◆2
#
, (2)

and

⌧�1
R = anADM(1� xD)h�Ri

' 32⇡4anADM(1� xD)�T,D

✓
TD

BD

◆4

. (3)

Here, �T,D ⌘ 8⇡↵2
D/(3m2

e) is the dark Thomson cross
section, a is the scale factor describing the expansion

1 In this work, we neglect the small contribution to the opacity
from photoionization processes.

of the Universe, xD is the ionized fraction of the dark
plasma, nADM is the number density of dark atoms, �R

is the Rayleigh scattering cross section, and where the an-
gular bracket denotes thermal averaging. We note that
the second line of Eq. (3) is only valid if TD < BD. It
is out of the scope of this paper to discuss in detail the
evolution of the ionized fraction and of the DM temper-
ature. We refer the reader to Ref. [47] for a thorough
investigation of dark atom recombination and thermal
history.

B. ⇠ vs �Ne↵

We note that, as far as the background cosmological ex-
pansion is concerned, varying the temperature of the DR
in PIDM models is equivalent to changing the e↵ective
number of relativistic species (commonly parametrized in
the literature by �Ne↵) in ⇤CDM models according to
the correspondence

�Ne↵ $ 8

7

✓
11

4

◆4/3

⇠4. (4)

However, since the DR described by our parameter ⇠ af-
fects the evolution of cosmological fluctuations in a di↵er-
ent way than the neutrino-like relativistic species usually
parametrized by �Ne↵ (because our DR couples to DM
and is not always free-streaming), we emphasize that one
cannot blindly translate the known constraints on �Ne↵

from, say, Planck [71] to a bound on ⇠. In fact, as we dis-
cuss below, the bounds on ⇠ can be much more stringent
than the naive constraints one would obtain by translat-
ing the known limits on �Ne↵ using Eq. (4). Therefore,
we emphasize that the correspondence given in Eq. (4) is
only useful when comparing the cosmological expansion
history of PIDM models with that of standard ⇤CDM
models.

III. COSMOLOGICAL EVOLUTION

A. Dark Acoustic Oscillation Scale

Since a fraction of the DM forms a tightly-coupled
plasma in the early Universe, the evolution of cosmo-
logical fluctuations in the PIDM model departs signifi-
cantly from that of a standard ⇤CDM Universe. Indeed,
as Fourier modes enter the causal horizon, the DR pres-
sure provides a restoring force opposing the gravitational
growth of over densities, leading to the propagation of
dark acoustic oscillations (DAO) in the plasma. These
acoustic waves propagate until DR kinematically decou-
ples from the interacting DM component. Similar to the
baryon case, the scale corresponding to the sound hori-
zon of the dark plasma at kinetic decoupling remains im-
printed on the matter field at late times. This so-called

2

in optical astronomy. We present here the mathematical
framework necessary to extract the substructure power
spectrum directly from pixel-based images. While our
general approach follows a similar philosophy to that
of Ref. [79], our computational technique di↵ers at sev-
eral levels, especially in our use of a mode function-
based approach. Importantly, we extend our power spec-
trum mathematical framework to include compact time-
varying sources such as quasars, hence opening substruc-
ture power spectrum measurements to a broader range
of gravitational lenses. Since the goal of this paper is
to present the framework necessary to extract measure-
ments of the substructure power spectrum from lensed
images and develop some intuition about their sensitivity
to this latter quantity, we focus here on simple paramet-
ric source and lens models.

Given the unique potential of this technique in prob-
ing sub-kiloparsec scales within galaxies at cosmological
distances from the Milky Way, we aim this paper at a
non-expert audience. As such, we carefully review the
di↵erent ingredients and assumptions entering our analy-
sis. Hasty or expert readers could directly skip to Sec. IV
for details about our method to extract the substructure
convergence power spectrum from images of gravitation-
ally lensed sources.

This paper is organized as follows. In Sec. II, we
review the mass decomposition of the lens galaxy into
macrolens and substructure, and then introduce the sub-
structure convergence power spectrum. In Sec. III, we re-
view the impact of mass substructure on observed images
of galaxy-scale gravitational lenses, focusing on extended
sources. In Sec. IV, we present the derivation of our like-
lihood for the substructure convergence power spectrum
in the case of extended lensed images. The numerical
implementation of this likelihood is discussed in Sec. V.
We present in Sec. VII analyses of mock images

Throughout this paper, we assume a Planck 2015 cos-
mology [83]. We also take the redshift of the source
to z

src

= 0.6 and that of the lens to be z
lens

= 0.25,
which results in a critical density for lensing ⌃

crit

=
5.998 ⇥ 1010M�/arcsec2 = 3.686 ⇥ 109M�/kpc2 in the
lens plane. A useful number to keep in mind is that for
these choices of cosmology and redshifts, 1 arcsec ⇡ 4
kpc in the lens plane.

⇠ ' 0.5 (1)

II. SMALL-SCALE STRUCTURE WITHIN LENS
GALAXIES

We begin this paper by reviewing the distinction be-
tween the so-called macro lens mass model and the small-
scale mass substructures contained within the lens galax-
ies or along the line of sight. We then review the relevant
statistical properties of mass substructures that are most
interesting from a gravitational lensing point of view.

A. Mass decomposition for galaxy-scale lenses

In this work, we specialize to to the case of galaxy-scale
strong gravitational lenses, in which multiple images of a
background source are generated. In general, the exact
structure of the gravitational potential �

lens

responsible
for the lensing is the result of the complex assembly his-
tory of the lens galaxy as well as its subsequent dynam-
ical evolution. In addition, structures along the line of
sight can also contribute to the richness of the projected
gravitational potential. Despite this apparent complex-
ity, many observed galaxy-scale gravitational lenses can
be reasonably fitted with relatively simple mass models,
such as isothermal ellipsoids.

A typical lens galaxy contains structure on a variety of
scales, with the larger scale features responsible for the
broad morphology of the observed lensed images, while
the small-scale structures (e.g. satellite galaxies, giant
molecular clouds, globular clusters, etc.) give rise to
small corrections to the lensed observables. This suggests
that we can decompose the projected mass density into
a dominant macro component 

0

(y) ⌘ h
lens

(y)i, where
the bracket h. . .i denotes ensemble averaging over con-
vergence configurations that lead to the observed lensed
images, and a small contribution 

sub

parametrizing the
di↵erence between the actual projected mass distribution
and the mean-field approximation 

0

, that is,


lens

(y) = 
0

(y) + 
sub

(y). (2)

Note that we have absorbed the mean convergence in
substructures (denoted ̄

sub

) within 
0

such that the


sub

field as defined above has zero expectation value,
h

sub

i = 0. We note that in the absence of lensing time-
delay observations, stellar kinematic measurements, or
strong priors on the brightness and size of the source, it
is di�cult to constrain ̄

sub

due to the mass-sheet degen-
eracy [84]. We shall refer to 

0

(and �
0

) as the macro
lens (or component) since it is responsible for determin-
ing the broad configuration of the lens. In general, it
contains the contributions from the smooth dark mat-
ter halo, the dominant baryonic structure (disk or oth-
erwise), and possibly from single massive subhalos sig-
nificantly a↵ecting the configuration of the lens (such as
those identified in Refs [68, 71, 73]).

On the other hand, the substructure convergence 
sub

(and its related lensing potential �
sub

) contains contri-
butions from the usual dark matter subhalos and satel-
lite galaxies orbiting the main lens galaxy, but also from
other astrophysical structures such as tidal streams, de-
bris, dense gas clouds, and globular clusters, as well as
from possible line-of-sight structures. The crucial point is
that the perturbations encoded in 

sub

are subdominant1

1 By construction, if the 
sub

perturbations were large, they would
lead to easily detectable e↵ects, implying that they should have
been absorbed in 

0

.

Natural value:
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Phenomenology of dark matter-dark radiation 
interaction: Sound wave
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Phenomenology of dark matter-dark radiation 
interaction: Sound wave

z ⇥ 1.9 ⌅ 107

z ⇥ 7.0 ⌅ 106

z ⇥ 2.3 ⌅ 106

z ⇥ 5.9 ⌅ 105

z ⇥ 1.5 ⌅ 105

0.001 0.005 0.010 0.050 0.100 0.500 1.000
0

2

4

6

8

10

12

14

r �h�1Mpc⇥

⇤⇤r⌅

Baryons

Photons

Dark Photons

Atomic Dark Matter

z = 2.87 ¥ 104

1.0 10.05.02.0 3.01.5 7.0
0.0

0.1

0.2

0.3

0.4

0.5

r @h-1MpcD

dHrL

z ⇥ 1.9 ⌅ 107

z ⇥ 7.0 ⌅ 106

z ⇥ 2.3 ⌅ 106

z ⇥ 5.9 ⌅ 105

z ⇥ 1.5 ⌅ 105

0.001 0.005 0.010 0.050 0.100 0.500 1.000
0

2

4

6

8

10

12

14

r �h�1Mpc⇥

⇤⇤r⌅

Baryons

Photons

Dark Photons

Atomic Dark Matter

DAO Scale

Damping



10/1/19Francis-Yan Cyr-Racine, UNM 10

The structure of the dark matter density field is 
distinctly different

Cold DM Warm DM DM-DR interaction
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Broad diversity of matter power spectrum shapes
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What determines the shape of the matter power 
spectrum?

WDM example: The momentum distribution function determines the 
shape of the cutoff.  16

(a) mu lepton asymmetry

0 1 2 3 4 5 6 7 8

p̂ � p/T

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

p̂
2

f
�

s
(
p̂
)
(
�

1
0

2

)

Tc = 250 MeV

Tc = 1000 MeV

FD, g = 0.003

0.8

1.5

2.9

5.5

10.5

20.0

s
i
n

2

(
2
�
)

�
1
0

1
1

(b) sterile neutrino PSDs at T = 10 MeV

(c) net sterile density (d) sterile antineutrino PSDs at T = 10 MeV

FIG. 10: Sterile neutrino production mechanism: Panels (a) and (c) show the entropy scaled mu lepton asymmetry and the
net sterile number density with temperature. For each model with a given mass and mixing angle, the mu lepton asymmetry
at high temperatures is tuned by hand to produce the right relic abundance. Panels (b) and (d) show sterile neutrino and
antineutrino PSDs, respectively, at T = 10 MeV. Colors di↵erentiate models in Fig. 1, and solid and dashed lines distinguish
results with neutrino opacities from Fig. 8c and 8d respectively. Note the di↵erent numerical factors multiplying the y-axis of
panels (b) and (d). The dotted line in panel (b) is a massless Fermi-Dirac distribution with degeneracy g = 0.003.

Table III lists parameters describing the production
and final sterile neutrino DM PSDs for the models
marked in Fig. 1. Also provided are the ranges for di↵er-
ent interpolated µ neutrino opacities through the quark-
hadron transition as in Fig. 8. Note that the sterile PSDs
in Figs. 10b and 10d are non-thermal; we show the mean
momentum hp/T i relative to the active neutrino temper-
ature scale.

A key element to take away from Table III and
Figs. 10b and 10d is that the ‘warmer’ models with larger
values of hp/T i are less sensitive to the uncertainty in the
quark-hadron transition. This is important since these
warmer models can be most easily constrained by small-
scale structure formation. Therefore, uncertainties in the
strong plasma near TQCD are unlikely to a↵ect the ro-
bustness of the these constraints.

VI. TRANSFER FUNCTIONS FOR MATTER
FLUCTUATIONS

In this section, we study the e↵ect of sterile neutri-
nos on the growth of density fluctuations in the early
universe. We focus on the lepton asymmetry-driven
mechanism outlined in Sec. II, and on modes of the
matter distribution with co-moving wavenumbers k 2
[1, 100] hMpc�1. These scales are probed by the Lyman-
↵ forest in quasar spectra (see [115] and references
therein), and populations of dwarf galaxies in the Local
Group (see [116, 117] and references therein). All these
scales enter the horizon after the redshift zH ' 4 ⇥ 107,
when the temperature of the photon-baryon plasma is
T ' 10 keV. The sterile neutrino models shown in Fig. 1
cease to be produced below temperatures T ⇠ 100 MeV;

17

TABLE III: Parameters for the models marked in Fig. 1,
with ms = 7.1 keV and ⌦DMh2 = 0.119 [2]. The ranges
displayed in the three last columns account for the
uncertainties in the neutrino opacities near the

quark-hadron transition.

sin2 2✓ (Lµ/sSM)i (Lµ/sSM)f hp/T i a

at T = 10 GeV at T = 10 MeV

⇥10�11 ⇥10�5 ⇥10�5

0.800 13.0 – 13.1 6.95 – 7.03 2.60 – 2.61

1.104 10.80 – 10.88 4.74 – 4.81 2.45 – 2.47

1.523 9.57 – 9.64 3.51 – 3.58 2.28 – 2.32

2.101 8.81 – 8.88 2.76 – 2.83 2.12 – 2.16

2.899 8.32 – 8.39 2.27 – 2.34 1.95 – 2.01

4.000 7.96 – 8.03 1.93 – 2.00 1.80 – 1.87

5.519 7.69 – 7.76 1.68 – 1.74 1.66 – 1.74

7.615 7.45 – 7.53 1.47 – 1.54 1.53 – 1.62

10.506 7.20 – 7.29 1.28 – 1.36 1.43 – 1.52

14.496 6.95 – 7.05 1.09 – 1.18 1.35 – 1.44

20.000 6.7 – 6.8 0.9 – 1.0 1.29 – 1.38

a The sterile DM distributions are non-thermal; we compute
hp/T i using the active neutrino temperature. Below the epoch
of e± annihilation, the latter is related to the CMB
temperature by the factor (4/11)1/3 = 0.714. We note that for
a Fermi-Dirac distribution hp/T i ' 3.15

hence we can assume they are essentially collisionless in
this section.

The main e↵ect of such a collisionless component on
matter fluctuations is suppression due to free-streaming
in the epochs where it is relativistic [118, 119]. Previ-
ous works extensively studied this in the context of warm
and/or neutrino DM models (see Refs. [120, 121] and ref-
erences therein), and identified the characteristic scales
at which the suppression set in as a function of the neu-
trinos’ mass and mean momentum [18].

In order to obtain the suppression’s detailed form, we
need to incorporate the PSDs of the sterile neutrinos
and antineutrinos into the Boltzmann equation for the
DM component. This entails solving a perturbed form
of Eq. (8), with additional terms due to inhomogeneities,
but without the source (production) terms. The scales
of interest are non-linear in the current epoch, but we
only provide the linear transfer functions at z = 0, which
can be used as initial conditions for cosmological N-body
simulations.

We use the publicly available CLASS solver [86] to in-
tegrate the perturbed linear Boltzmann equation8. We
initiate the solver with the Planck background param-
eters [3], except with the CDM component replaced by

8 Our choice was motivated by the availability of well-documented
modules to deal with non-cold relics. We have checked our results
against those obtained from a modified version of the publicly
available CAMB solver [122].
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FIG. 11: Suppression of the transfer functions of overall
density fluctuations relative to the ⇤CDM ones for sterile
neutrino models in Fig. 1, as a function of wavenumber.
Dashed and dotted lines show results for the interpolated µ
neutrino scattering rates of Figs. 8c and 8d, respectively.
The solid black line is the numerical fit for a thermal warm
DM transfer function as given in Ref. [124].

collisionless components with PSDs as shown in Figs. 10b
and 10d. Since we are interested in the detailed shape
of the transfer function, we turn o↵ the default fluid ap-
proximation for non-cold relics [123].
Figure 11 shows the resulting suppression as a function

of the comoving wavenumber. We illustrate the sup-
pression in the fluctuations’ transfer functions relative
to their values in ⇤CDM. Also shown is the commonly-
used fit to a thermal warm DM transfer function given
in Refs. [23, 124] with an ‘equivalent thermal mass’ of
mth = 2.2 keV; fits for models marked with stars in Fig. 1
have a range of 1.6 to 3.2 keV.
However, the strong di↵erence in shape with the ther-

mal WDM transfer function warrants use of the exact
sterile neutrino dark matter transfer functions. The ther-
mal warm DM PSDs relevant to the fit are rescaled ver-
sions of the Fermi-Dirac distribution; as can be seen from
Fig. 10b, the resonantly-produced DM’s PSD has an ex-
cess at low momenta that cannot be reproduced by such
a rescaling. Hence, our DM transfer functions do not ex-
hibit the fits’ steep⇠ k�10 dependence at large wavenum-
bers and the resultant severe suppression of power on
small scales. This indicates that the models considered
in the present work are more likely to be in agreement
with small-scale structure formation constraints, as re-
cently pointed out in Refs. [57–62, 65].

VII. DISCUSSION AND CONCLUSIONS

Sterile neutrinos are a well-motivated extension of the
standard model of particle physics, and o↵er a promising
candidate for the inferred DM population of the Uni-

Venumadhav , Cyr-Racine+ (2015)
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What determines the shape of the matter power 
spectrum?
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What determines the shape of the matter power 
spectrum?

A narrow dark matter drag visibility function maximizes differences 
between DM-DR models and WDM. 
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The correlation function: A more intuitive picture?

• In general, the phenomenology of these models is not described 
by a single parameters (i.e. half-mode mass). 
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Extra correlation in the density field

• Enhancement beyond CDM?
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What about the halo mass function?

• Mass variance is seems to suggest that this is a 3-scale problem.
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Non-linear evolution of DAOs

• Mode-coupling erases acoustic oscillations over time
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Non-linear evolution of DAOs

• They might survive long-enough to be observed at high redshifts
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What about the halo mass function?

• DAO: Sowing confusion in the halo mass function 
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What about the halo mass function?

• We might already have seen this in simulations!

Buckley et al. (2014)
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Halo mass function: Weak DAO case

• We might already have seen this in simulations!

Samei et al. (2019)

6 O. Sameie et al.

Figure 3. Analytical halo mass function (solid line) vs. simulation results (dashed like) at four different redshifts z = 0, 2, 4, and 6. Error bars are calculated
by assuming the halo abundance in each mass bin follows a Poisson distribution. We find the analytical model, when calibrated to a simulated mass function
down to 10

10M� at z = 0, can successfully fit mass functions which extend to 10

8M� at z = 4, while it slightly overpredicts at z = 6.

mass bin:

n(> M⇤) = nh(> M) + nsh(> M) (7)

The CDM subhalo mass function in each mass is estimated as

nsh;CDM(m, z) =

Z 1

0

N(m|M, z)nh(M, z)dM (8)

where N(m|M, z)m = N(m|M, z = 0)f(z)dm is the total num-
ber of subhaloes in the mass range m+ dm for a parent halo with
mass M at given redshift z. We use the analytical formula for the
subhalo count given a parent halo at z = 0 proposed by Giocoli
et al. (2008):

N(m|M, z = 0) =

N0

m
x�↵

e

�6.283x3

, x =

m

↵M
(9)

with ↵ = 0.8 and N0 = 0.21, and multiply it by a redshift evolu-
tion factor f(z) ⌘ fsub(z)/fsub(z = 0) = 1� z/6 which is esti-

mated by Conroy & Wechsler (2009). As pointed out by these au-
thors, the redshift evolution has some mild mass-dependency which
we ignore in this work for simplicity. Moreover, the fitting formula
in Giocoli et al. (2008) for the abundance of subhaloes for a given
parent halo is calibrated for CDM. In principle one needs to recali-
brate it for non-CDM models as well. For simplicity, we assume the
depletion of subhaloes in the non-CDM models follows the same
ratio as a function of mass as for the haloes and estimate the sub-
halo distribution by multiplying the CDM subhalo mass function
by the ratio of non-CDM to CDM halo mass functions:

nsh;non�CDM(m, z) =
nh;non�CDM(M, z)

nh;CDM(M, z)
nsh,CDM(m, z).

(10)
We emphasize that the contribution of subhaloes to the total mass
function remains sub-dominant compared to that of halos (see for
example Vale & Ostriker 2004; Conroy et al. 2006), and hence we
do not expect a more precise treatment of the subhalo distribution
in non-CDM models to significantly change our main results. In

c
� 0000 RAS, MNRAS 000, 000–000

Vogelsberger et al. (2016)
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• A DAO-like power spectrum cutoff could have an interesting 
effect on the mass-concentration relation

Moliné et al. (2017)
Bose et al. (2015)
Lovell et al. (2014)
Schneider et al. (2012)
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TBD!
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Applications, or why do we care?
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This kind of DM physics could help alleviate 
cosmological tensions
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Joudaki et al. (2019), 
arXiv:1906.09262
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This kind of DM physics could help alleviate 
cosmological tensions

Cyr-Racine et al. (2013)
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Exploring  degeneracies between self-
interaction and a cutoff

Vogelsberger et al. (2016)
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Exploring  degeneracies between self-
interaction and a cutoff

Drlica-Wagner et al. (2019)
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Exploring  degeneracies between self-
interaction and a cutoff

Drlica-Wagner et al. (2019)
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Conclusions
• DM-DR interaction models can make quite diverse predictions 

from the matter power spectrum and halo mass function. 

• In the strong DAO case, these predictions can be quite distinct as 
compared to either WDM or CDM, especially for the halo mass 
function.

• In general, these models are also self-interacting, and are thus 
important testbeds for studying the interplay between a cutoff and 
self-interaction.

Thank you!


