

Warm dark matter: overview

Mark Lovell (University of Iceland [HÍ] & Durham University)

M. Lovell, HÍ & Durham

What is warm dark matter? — Cosmology

M. Lovell, HÍ & Durham

What is warm dark matter?

- Cosmology, N.B.

M. Lovell, HÍ & Durham

What is warm dark matter?

Particle physics

- Gravitino
- Sterile neutrino non-resonant
- Sterile neutrino resonantly produced
- Sterile neutrino heavy scalar decay

Gravitinos

- Panels & Primack 1982
- In supersymmetry, gravitino can be massive
- In order to close the Universe and freeze-out within thermal equilibrium, require m_{grav}≤1keV: very-WDM
- For m_{grav}~[1-100]keV, require decay of thermalised sparticles (Giudice & Rattazi 1999), sensitive to the temperature post inflation.

- Three new, sterile neutrinos
- Two explain baryogenesis, neutrino oscillations. Unstable.
- Third is dark matter candidate:
- Lifetime of 10^{28} s = $3.2x10^{20}$ yr = $2.3x10^{10}$ age of the Universe
- Non-resonant: production in absence of lepton asymmetry.
- Ruled out by X-ray observations

M. Lovell, HÍ & Durham

Sterile neutrino – heavy scalar

- Generate sterile neutrino through two mechanisms: nonresonant + decay of heavy scalar into two sterile neutrinos. Add together for total dark matter abundance
- Non-resonant component very warm, scalar component almost cold

M. Lovell, HÍ & Durham

Sterile neutrino – probes

M. Lovell, HÍ & Durham

Sterile neutrino — detection with SHiP

- The two GeV sterile neutrinos could be detected at the SHiP experiment
- Produced in rare decays of mesons
- If approved, will start taking data in 2026 at the earliest

M. Lovell, HÍ & Durham

Sterile neutrino — X-ray decay

- Claims of X-ray detection in clusters and some galaxies at an energy of 3.55keV
- Discussion mostly centres on modelling the background
- Two tests:
- All claimed detections must agree on the DM mass and mixing angle
- Velocity dispersion in clusters must be >600km/s (gas <200km/s)

10¹

 10°

 10^{-1}

10⁻²

10⁻³

 $\mathsf{F}/\mathsf{F}_{\mathsf{M31}}$

M. Lovell, HÍ & Durham

Sterile neutrino supernova effects

- Sterile neutrinos can be generated in supernova explosions
- For the 3.55keV line-compliant 7keV sterile neutrino, >10⁵²erg could be emitted in sterile neutrinos per explosion
- Major uncertainty: temperature of supernova core

Syvolap, Ruchayskyi & Boyarsky 2019 (see also Suliga, Tamborra & Wu 2019)

M. Lovell, HÍ & Durham

Sterile neutrino — as warm dark matter

M. Lovell, HÍ & Durham

- Resonances preferentially generate sterile neutrinos at particular energies — freeze-in
- Momentum and amplitude of resonances increases with lepton asymmetry, L₆
- Momentum distribution maximally cold at L₆=8 (25) for 7keV (2keV) mass.

M. Lovell, HÍ & Durham

- Resonances preferentially generate sterile neutrinos at particular energies — freeze-in
- Momentum and amplitude of resonances increases with lepton asymmetry, L₆
- Momentum distribution maximally cold at L₆=8 (25) for 7keV (2keV) mass.

M. Lovell, HÍ & Durham

- Resonances preferentially generate sterile neutrinos at particular energies — freeze-in
- Momentum and amplitude of resonances increases with lepton asymmetry, L₆
- Momentum distribution maximally cold at L₆=8 (25) for 7keV (2keV) mass.

- Halo abundance
- Halo collapse time
 - Halo mass
 - Halo concentration

- Halo abundance
- Halo collapse time
 - Halo mass
 - Halo concentration

Ratio of ETHOS-to-CDM mass functions

M. Lovell, HÍ & Durham

Halo abundance

- Halo collapse time
 - Halo mass
 - Halo concentration

Schneider+2017 (also considers mixed-DM, SIDM)

HI velocity functions

M. Lovell, HÍ & Durham

MW satellite counts

- Halo abundance
- Halo collapse time
 - Halo mass
 - Halo concentration

(see also Cherry & Horiuchi, 2017) Reykjavík, 30/09/19

M. Lovell, HÍ & Durham

- Halo abundance
- Halo collapse time
 - Halo mass
 - Halo concentration

Despali, ML+2019 Reykjavík, 30/09/19

M. Lovell, HÍ & Durham

QSO flux ratio anomalies

Gilman+2019 (see also Hsueh+2019)

M. Lovell, HÍ & Durham

M. Lovell, HÍ & Durham

High redshift counts

- Halo abundance
- Halo collapse time
 - Halo mass
 - Halo concentration

- Halo abundance
- Halo collapse time
 - Halo mass
 - Halo concentration

Bose, ML+2017

M. Lovell, HÍ & Durham

- Halo abundance
- Halo collapse time
 - Halo mass
 - Halo concentration

CMB absorption by 21-cm

M. Lovell, HÍ & Durham

- Halo abundance
- Halo collapse time
 - Halo mass
 - Halo concentration

Galaxy ages

M. Lovell, HÍ & Durham

- Halo abundance
- Halo collapse time
 - Halo mass
 - Halo concentration

dSph stellar mass-halo mass

M. Lovell, HÍ & Durham

- Halo abundance
- Halo collapse time
 - Halo mass
 - Halo concentration

30

25

10

25

20

10

5

0

25

20

5

0E 10

100

V_{max} [km s¹]

 $N(>V_{max})$

 $N(>V_{max})$

 $N(>V_{max})$

M. Lovell, HÍ & Durham

Reykjavík, 30/09/19

Summary

- WDM models derived from comprehensive models of particle physics
- Sterile neutrinos imprinted in particle physics experiments, Xray observations and supernovae
- WDM properties imprinted on ~11 observables

M. Lovell, HÍ & Durham